Оптимізація пористого органічного конденсатора на основі листя багаси з використанням методу Тагучі

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2025.336978

Ключові слова:

метод Тагучі, багасовий лист, органічний конденсатор оксид олова, діелектричний матеріал

Анотація

Об'єктом цього дослідження є вуглецеві органічні конденсатори, отримані з листя багаси з цукрового заводу Кебон Агунг, Маланг, Джава-Тімур, які служать екологічно чистим матеріалом-попередником. Проблема оптимізації продуктивності органічних конденсаторів на основі листя жома була значною перешкодою на шляху розвитку екологічних електронних компонентів. Це дослідження має на меті розробити структуру якості для синтезу цих конденсаторів шляхом систематичної оптимізації параметрів за допомогою методу Тагучі. Традиційні методи часто призводять до непослідовної продуктивності та високої мінливості, що ускладнює досягнення надійних результатів. Застосовуючи ортогональний масив Тагучі, це дослідження визначило ключові фактори та оптимальні рівні, ефективно зменшуючи експериментальні зусилля, забезпечуючи надійну продуктивність. Карбонізацію листя багаси проводили за допомогою прямого спалювання розчинником і 70% метанолу як рідких пальників. Випробування ємності показали стабільні значення в діапазоні від 0,8897 нФ до 0,9281 нФ під час випробувань, демонструючи послідовну та відтворювану поведінку. Оцінка теплового шуму показала незначні коливання температури (від 69,01°C до 72,01°C), що вказує на вплив температури на рухливість електронів у діелектричних матеріалах. Систематичний підхід методу Тагучі мінімізував варіабельність і підвищив надійність конденсаторів за різних температурних умов. Зосередженість методу на надійності та контролі якості забезпечила узгоджені значення ємності та покращила загальну продуктивність конденсатора. У порівнянні з традиційними методами, метод Тагучі полегшив ретельне дослідження простору дизайну з меншою кількістю експериментів. Це дослідження підкреслює важливість систематичної оптимізації конструкції конденсаторів, пропонуючи надійний шлях для інтеграції стійких матеріалів у передові електронні компоненти. Результати дають цінну інформацію про вплив різних параметрів на показники продуктивності, сприяючи розробці високоякісних органічних конденсаторів

Біографії авторів

Nasir Widha Setyanto, Brawijaya University

Doctoral Student

Department of Mechanical Engineering

Master of Engineering, Assistant Professor

Department of Industrial Engineering

Sugiono Sugiono, Brawijaya University

Doctor of Engineering, Professor

Department of Industrial Engineering

Yudy Surya Irawan, Brawijaya University

Doctor of Engineering, Associate Professor

Department of Mechanical Engineering

Willy Satrio Nugroho, Brawijaya University

Doctor of Engineering, Assistant Professor

Department of Mechanical Engineering

I Nyoman Gede Wardana, Brawijaya University

Doctor of Engineering, Professor

Department of Mechanical Engineering

Посилання

  1. Widyasari, W. B., Putra, L. K., Ranomahera, M. R. R., Puspitasari, A. R. (2021). Historical Notes, Germplasm Development, and Molecular Approaches to Support Sugarcane Breeding Program in Indonesia. Sugar Tech, 24 (1), 30–47. https://doi.org/10.1007/s12355-021-01069-0
  2. Murali, P., Puthira Prathap, D. (2016). Technical Efficiency of Sugarcane Farms: An Econometric Analysis. Sugar Tech, 19 (2), 109–116. https://doi.org/10.1007/s12355-016-0456-8
  3. Setianingsih, T., Susilo, B., Mutrofin, S., Ismuyanto, B., Endaryana, A. N., Yoniansyah, Y. N. (2022). Influence of sequential pyrolisis methods on the properties of the carbon nanostructure (CNS) from sugarcane leaf biomass. Journal of Applied Research and Technology, 20 (4), 460–471. https://doi.org/10.22201/icat.24486736e.2022.20.4.1324
  4. Dina, A. A., Tama, I. P., Gapsari, F., Ayunin, A. Q. (2025). An Analysis Of Life Cycle Sustainability Assessment On The Sugar Production Process In Pt X. International Journal of Mechanical Engineering Technologies and Applications, 6 (1), 83–99. https://doi.org/10.21776/mechta.2025.006.01.7
  5. Batutah, M. A., Nguyen, D. T. A. (2025). The Effect Of Exhaust Emissions L, O2, Co, Co2 And Hydrocarbon For Performance Of All New Ertiga Automotive. International Journal of Mechanical Engineering Technologies and Applications, 6 (1), 48–57. https://doi.org/10.21776/mechta.2025.006.01.5
  6. Alamsah, A., Wahjudi, A., Moon, P. J., Hamidi, N., Widhiyanuriyawan, D. (2025). Spatial and Temporal Potential of Current Energy and Wave Height in Indonesian sea. International Journal of Mechanical Engineering Technologies and Applications (MECHTA), 6 (2), 249–258. https://doi.org/10.21776/MECHTA.2025.006.02.8
  7. Wardani, A. K., Utami, C. P., Hermanto, M. B., Sutrisno, A., Nurtyastuti, F. (2023). Bioethanol Production from Sugarcane Molasses by Fed-Batch Fermentation Systems Using Instant Dry Yeast. Microbiology and Biotechnology Letters, 51 (2), 184–190. https://doi.org/10.48022/mbl.2301.01012
  8. Singh, O. K. (2020). Application of Kalina cycle for augmenting performance of bagasse-fired cogeneration plant of sugar industry. Fuel, 267, 117176. https://doi.org/10.1016/j.fuel.2020.117176
  9. Soenoko, R., Purnami, P. (2019). Bowl bladed hydrokinetic turbine with additional steering blade numerical modeling. Eastern-European Journal of Enterprise Technologies, 4 (8 (100)), 24–36. https://doi.org/10.15587/1729-4061.2019.173986
  10. Qiram, I., Hamidi, N., Yuliati, L., Nugroho, W. S., Wardana, I. N. G. (2022). The analysis of Si/Al ratio on CGA decomposition in Indonesian traditional Kreweng pottery coffee roaster to maximize coffee acidity. Eastern-European Journal of Enterprise Technologies, 4 (6 (118)), 22–37. https://doi.org/10.15587/1729-4061.2022.260258
  11. Satrio, N. W., Winarto, Sugiono, Wardana, I. N. G. (2020). The role of turmeric and bicnat on hydrogen production in porous tofu waste suspension electrolysis. Biomass Conversion and Biorefinery, 12 (7), 2417–2429. https://doi.org/10.1007/s13399-020-00803-0
  12. Mohanty, A., Jaihindh, D., Fu, Y.-P., Senanayak, S. P., Mende, L. S., Ramadoss, A. (2021). An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. Journal of Power Sources, 488, 229444. https://doi.org/10.1016/j.jpowsour.2020.229444
  13. Wang, H., Niu, H., Wang, H., Wang, W., Jin, X., Wang, H. et al. (2021). Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. Journal of Power Sources, 482, 228986. https://doi.org/10.1016/j.jpowsour.2020.228986
  14. Klapiszewski, Ł., Szalaty, T. J., Graś, M., Moszyński, D., Buchwald, T., Lota, G., Jesionowski, T. (2020). Lignin-based dual component additives as effective electrode material for energy management systems. International Journal of Biological Macromolecules, 165, 268–278. https://doi.org/10.1016/j.ijbiomac.2020.09.191
  15. Wijayanti, W., Sasongko, M. N., Purnami (2016). The calorific values of solid and liquid yields consequenced by temperatures of mahogany pyrolysis. ARPN Journal of Engineering and Applied Sciences, 11 (2), 917–921. Available at: https://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0116_3427.pdf
  16. Chauhan, P. R., Raveesh, G., Pal, K., Goyal, R., Tyagi, S. K. (2023). Production of biomass derived highly porous activated carbon: A solution towards in-situ burning of crop residues in India. Bioresource Technology Reports, 22, 101425. https://doi.org/10.1016/j.biteb.2023.101425
  17. Freddi, A., Salmon, M. (2018). Introduction to the Taguchi Method. Design Principles and Methodologies, 159–180. https://doi.org/10.1007/978-3-319-95342-7_7
  18. Oluwo, A., Alozie, N. S., Ogunmola, B. Y., Ajibade, A. T., Rajan, J., Jose, S., Oke, S. A. (2025). An analysis of the optimisation of leaf springparameters using the aspect ratio-basedtaguchi-pareto method. International Journal of Mechanical Engineering Technologies and Applications (MECHTA), 6 (2), 189–201. https://doi.org/10.21776/MECHTA.2025.006.02.3
  19. Wardhani, A. K., Novareza, O., Purnami, P., Mohamad, E. B. (2025). Combination Of OEE And FMEA Methods To Analyze The Effectiveness Of Production Machines. International Journal of Mechanical Engineering Technologies and Applications (MECHTA), 6 (2), 163–175. https://doi.org/10.21776/MECHTA.2025.006.02.1
  20. Ogunmola, B. Y., Onitiri, M. A., Alozie, N. S., Oluwo, A., Okwo, J. U., Rajan, J. et al. (2025). Application Of Entropy Multicriteria Method For Parametric Classification Of The Wire Electrical Discharge Machining Process Using Nitinol-60 Shape Memory Alloy. International Journal of Mechanical Engineering Technologies and Applications (MECHTA), 6 (2), 268–282. https://doi.org/10.21776/MECHTA.2025.006.02.10
  21. Karmakar, B., Dhawane, S. H., Halder, G. (2018). Optimization of biodiesel production from castor oil by Taguchi design. Journal of Environmental Chemical Engineering, 6 (2), 2684–2695. https://doi.org/10.1016/j.jece.2018.04.019
  22. Absike, H., Essalhi, Z., Labrim, H., Hartiti, B., Baaalla, N., Tahiri, M. et al. (2021). Synthesis of CuO thin films based on Taguchi design for solar absorber. Optical Materials, 118, 111224. https://doi.org/10.1016/j.optmat.2021.111224
  23. Vyas, M., Jain, M., Pareek, K., Garg, A. (2019). Multivariate optimization for maximum capacity of lead acid battery through Taguchi method. Measurement, 148, 106904. https://doi.org/10.1016/j.measurement.2019.106904
  24. Chen, W.-H., Carrera Uribe, M., Kwon, E. E., Lin, K.-Y. A., Park, Y.-K., Ding, L., Saw, L. H. (2022). A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renewable and Sustainable Energy Reviews, 169, 112917. https://doi.org/10.1016/j.rser.2022.112917
  25. Fadly, M. S., Purnowidodo, A., Setyarini, P. H., Mustafa, M., Hamzah, M. S. (2025). Effect Of Penetration Positions Bullets On A Perforated Plate Against Ballistic Resistance Of Fiber Metal Laminate (FML). International Journal of Mechanical Engineering Technologies and Applications, 6 (1), 25–33. https://doi.org/10.21776/mechta.2025.006.01.3
  26. Pribadi, A. F., Alamsyah, F. A., Hidayat, W., Prayudi, M. E., Masykur, M. A., Solihin, I., Raharjo, R. (2024). Effect Of Variation Of Magnetic Induction Solenoid Values On Tensile And Impact Strength For Welding Between Low Carbon Steel And Medium Carbon Steel. International Journal of Mechanical Engineering Technologies and Applications, 5 (2), 139–150. https://doi.org/10.21776/mechta.2024.005.02.3
  27. Purnami, P., Satrio Nugroho, W., Hamidi, N., W, W., Schulze, A. A., Wardana, I. N. G. (2024). Double deep Q network intelligent adaptive control for highly efficient dynamic magnetic field assisted water electrolysis. International Journal of Hydrogen Energy, 59, 457–464. https://doi.org/10.1016/j.ijhydene.2024.01.321
  28. Raharjo, R., Darmadi, D. B., Gapsari, F., Setyarini, P. H., Alamsyah, F. A. (2024). Modification Of Woven Dendrocalamus Asper In Composite Applications. International Journal of Mechanical Engineering Technologies and Applications, 5 (2), 174–185. https://doi.org/10.21776/mechta.2024.005.02.6 6
  29. Sartika, D., Widhiyanuriyawan, D., Sugeng Widodo, A., Purnami, Wardana, I. N. G. (2025). The role of graphene Oxide’s aromatic rings in activated carbon made from banana leaves (ACBL) and Fe3O4 in hydrogen production. Carbon Resources Conversion, 8 (1), 100239. https://doi.org/10.1016/j.crcon.2024.100239
  30. Tanbar, F., Darmawan, M. R. I., Wibisono, M. M., Ariyadi, H. M., Nugraha, A. D., Wiranata, A., Muflikhun, M. A. (2025). The Utilization Of Geothermal Silica Waste In Additive Manufacturing With Stereolithography Resin For Detailed Prototyping Process. International Journal of Mechanical Engineering Technologies and Applications (MECHTA), 6 (2), 211–219. https://doi.org/10.21776/MECHTA.2025.006.02.5
  31. Purnami, P., Satrio Nugroho, W., Wardana, I. N. G., Permanasari, A. A., Sukarni, S., Gandidi, I. M., Tuan Abdullah, T. A., Johari, A. (2025). The impact of radio–green light interaction on hydrogen evolution reaction inhibition of carbon based electrophotocatalyst. Carbon Resources Conversion, 8 (3), 100308. https://doi.org/10.1016/j.crcon.2025.100308
  32. Nandiyanto, A. B. D., Oktiani, R., Ragadhita, R. (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4 (1), 97. https://doi.org/10.17509/ijost.v4i1.15806
  33. Fratini, S., Nikolka, M., Salleo, A., Schweicher, G., Sirringhaus, H. (2020). Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nature Materials, 19 (5), 491–502. https://doi.org/10.1038/s41563-020-0647-2
  34. Noh, Y., Kim, Y., Han, H., Jung, W., Kim, J. G., Kim, Y. et al. (2019). Improved Ion‐Transfer Behavior and Capacitive Energy Storage Characteristics of SnO2 Nanospacer‐Incorporated Reduced Graphene Oxide Electrodes. ChemElectroChem, 6 (9), 2503–2509. https://doi.org/10.1002/celc.201900543
  35. Al-Sehemi, A. G., Al-Ghamdi, A. A., Dishovsky, N., Nickolov, R. N., Atanasov, N. T., Manoilova, L. T. (2017). Effect of Activated Carbons on the Dielectric and Microwave Properties of Natural Rubber Based Composites. Materials Research, 20 (5), 1211–1220. https://doi.org/10.1590/1980-5373-mr-2017-0378
  36. Itoi, H., Ito, M., Kasai, Y., Tanabe, Y., Suzuki, R., Hasegawa, H. et al. (2021). Study of the pore size effect on the charge storage of hydrous RuO2 nanoparticles supported within the pores of activated carbon. Solid State Sciences, 111, 106472. https://doi.org/10.1016/j.solidstatesciences.2020.106472
  37. Purnami, P., Willy Satrio, N., Sofi’i, Y. K., Wardana, I. N. G. (2024). The impact of mechanical vibration at cathode on hydrogen yields in water electrolysis. Journal of Power Sources, 615, 235075. https://doi.org/10.1016/j.jpowsour.2024.235075
  38. Subagyo, T., Widhiyanuriyawan, D., Widodo, A. S., Nugroho, W. S., Wardana, I. N. G. (2025). The development of rice husk based TiO2-SiO2 hybrid organic thin film photovoltaic cell. Eastern-European Journal of Enterprise Technologies, 2 (12 (134)), 17–24. https://doi.org/10.15587/1729-4061.2025.324761
  39. Unno, Y., Bach, E., Dandoy, J., Fadeyev, V., Fleta, C., Jessiman, C. et al. (2025). Analysis of MOS capacitor with p layer with TCAD simulation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1071, 170045. https://doi.org/10.1016/j.nima.2024.170045
  40. Al-Haik, M. Y., Zakaria, M. Y., Hajj, M. R., Haik, Y. (2016). Storage of energy harvested from a miniature turbine in a novel organic capacitor. Journal of Energy Storage, 6, 232–238. https://doi.org/10.1016/j.est.2016.01.008
  41. Chen, Y.-Y., Tsai, C.-T., Huang, W.-L., Chien, C.-W., Kao, P.-C., Chu, S.-Y. (2021). Investigation and optimization of the charge generation layer (CGL) in tandem OLEDs using Taguchi’s orthogonal arrays and nondestructive capacitance-voltage (C-V) measurements. Synthetic Metals, 274, 116713. https://doi.org/10.1016/j.synthmet.2021.116713
Оптимізація пористого органічного конденсатора на основі листя багаси з використанням методу Тагучі

##submission.downloads##

Опубліковано

2025-10-30

Як цитувати

Setyanto, N. W., Sugiono, S., Irawan, Y. S., Nugroho, W. S., & Wardana, I. N. G. (2025). Оптимізація пористого органічного конденсатора на основі листя багаси з використанням методу Тагучі. Eastern-European Journal of Enterprise Technologies, 5(12 (137), 6–18. https://doi.org/10.15587/1729-4061.2025.336978

Номер

Розділ

Матеріалознавство