Оптимізоване адаптивне машинне навчання для динамічних потоків даних

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2025.343635

Ключові слова:

модель адаптації, обчислювальна продуктивність, виявлення дрейфу, потокова обробка, швидке оновлення

Анотація

Об’єктом дослідження є адаптивні системи машинного навчання, здатні обробляти великі обсяги швидкозмінних потокових даних у режимі реального часу. Розглядається проблема підтримки точності прогнозування та обчислювальної ефективності за наявності дрейфу концепцій. Дрейф концепцій стосується переважування статичних моделей під час випробування стаціонарних моделей, а також зміни характеру базових розподілів. Адаптивна архітектура включає виявлення дрейфу концепцій, орієнтоване на дивергенцію редагувань, та інкрементне оновлення моделі за допомогою гіпервимірної статистичної кластеризації сегментів. Результати експериментів з використанням змодельованих та реальних наборів даних демонструють, що адаптивна архітектура підтримує точність прогнозування вище 0,83 у сценаріях різкого, поступового, рекурентного та безперервного дрейфу. Порівняно з неадаптивними моделями, затримка адаптації зменшується приблизно в 2,6 рази, а непотрібні операції перенавчання зменшуються до 40%. Ці результати можливі завдяки тому, що запропонована структура здатна перенавчати рішення тоді і тільки тоді, коли зміни розподілу визначені як статистично значущі та значущі для моделі. Це призводить до уникнення надлишкових обчислень для процесорів та забезпечення стаціонарної моделі в умовах відсутності дрейфу. Основний внесок полягає в тому, що інженерія ознак виконується з урахуванням дрейфу, порогове регулювання адаптується до зазначених розподілів, а механізми оновлення використовуються, що ефективно використовують ресурси в єдиному високопродуктивному потоковому конвеєрі. Архітектура добре працює в умовах різкого, поступового, періодичного та безперервного дрейфу та ефективна для застосувань у реальному часі, включаючи аналітику розумного міста, моніторинг кібербезпеки, роботи дорожніх систем та Інтернет речей для промислових систем

Біографії авторів

Aivar Sakhipov, Astana IT University

PhD, Assistant Professor

School of Software Engineering

 

Aruzhan Mektepbayeva, Astana IT University

Master’s Student

School of Software Engineering

 

Amangul Talgat, K.Kulazhanov Kazakh University of Technology and Business

Senior Lector

Department of Information Technology

 

Maxot Rakhmetov, Kh.Dosmukhamedov Atyrau University

PhD, Associate Professor

Department of Computer Science

Ainagul Adiyeva, Kh.Dosmukhamedov Atyrau University

PhD, Associate Рrofessor

Department of Mathematics and Methodical Тeaching of Mathematics

 

Altynbek Seitenov, Astana IT University

MSc, Senior Lecturer

School of Software Engineering

Nurzhan Ualiyev, I. Zhansugurov Zhetysu University

Candidate of Physical and Mathematical Sciences, Senior Lecturer

Department of Information Technology and Artificial Intelligence

Shynar Yelezhanova, Kh.Dosmukhamedov Atyrau University

Candidate of Physico-Mathematical Sciences

Department of Software Engineering

Посилання

  1. Wang, J., Lu, T., Li, L., Huang, D. (2024). Enhancing Personalized Search with AI: A Hybrid Approach Integrating Deep Learning and Cloud Computing. Journal of Advanced Computing Systems, 4 (10), 1–13. https://doi.org/10.69987/jacs.2024.41001
  2. Navaux, P. O. A., Lorenzon, A. F., Serpa, M. da S. (2023). Challenges in High-Performance Computing. Journal of the Brazilian Computer Society, 29 (1), 51–62. https://doi.org/10.5753/jbcs.2023.2219
  3. Mektepbaeva, A., Medarov, A., Kulmuratova, A. (2024). Analysis of Penetration Testing Methods for Specific IoT Device: IP Camera. 2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST), 76–82. https://doi.org/10.1109/sist61555.2024.10629431
  4. Jones, R., Davies, H. (2024). High-Performance Digital Forensic Framework for Anomalous Ransomware Detection in File System Log Data. https://doi.org/10.36227/techrxiv.172599923.38750111/v1
  5. Xing, S., Wang, Y. (2025). Proactive Data Placement in Heterogeneous Storage Systems via Predictive Multi-Objective Reinforcement Learning. IEEE Access, 13, 117986–117998. https://doi.org/10.1109/access.2025.3586378
  6. Wilson, A., Anwar, M. R. (2024). The Future of Adaptive Machine Learning Algorithms in High-Dimensional Data Processing. International Transactions on Artificial Intelligence (ITALIC), 3 (1), 97–107. https://doi.org/10.33050/italic.v3i1.656
  7. Rane, N., Paramesha, M., Choudhary, S., Rane, J. (2024). Machine Learning and Deep Learning for Big Data Analytics: a Review of Methods and Applications. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4835655
  8. Kamila, N. K., Frnda, J., Pani, S. K., Das, R., Islam, S. M. N., Bharti, P. K., Muduli, K. (2022). Machine learning model design for high performance cloud computing & load balancing resiliency: An innovative approach. Journal of King Saud University - Computer and Information Sciences, 34 (10), 9991–10009. https://doi.org/10.1016/j.jksuci.2022.10.001
  9. Ahmadi, S. (2023). Optimizing Data Warehousing Performance through Machine Learning Algorithms in the Cloud. International Journal of Science and Research (IJSR), 12 (12), 1859–1867. https://doi.org/10.21275/sr231224074241
  10. Ji, E., Wang, Y., Xing, S., Jin, J. (2025). Hierarchical Reinforcement Learning for Energy-Efficient API Traffic Optimization in Large-Scale Advertising Systems. IEEE Access, 13, 142493–142516. https://doi.org/10.1109/access.2025.3598712
  11. Wang, S., Zheng, H., Wen, X., Fu, S. (2024). Distributed high-performance computing methods for accelerating deep learning training. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), 3 (3), 108–126. https://doi.org/10.60087/jklst.v3.n4.p22
  12. Cravero, A., Sepúlveda, S. (2021). Use and Adaptations of Machine Learning in Big Data – Applications in Real Cases in Agriculture. Electronics, 10 (5), 552. https://doi.org/10.3390/electronics10050552
  13. Naayini, P., Kamatala, S. (2023). High-Performance Data Computing: Parallel Frameworks, Execution Strategies, and Real-World Deployments. International Journal Of Scientific Advances, 4 (6). https://doi.org/10.51542/ijscia.v4i6.33
  14. Usman, S., Mehmood, R., Katib, I., Albeshri, A. (2022). Data Locality in High Performance Computing, Big Data, and Converged Systems: An Analysis of the Cutting Edge and a Future System Architecture. Electronics, 12 (1), 53. https://doi.org/10.3390/electronics12010053
  15. Gadde, H. (2023). Leveraging AI for Scalable Query Processing in Big Data Environments. International Journal of Advanced Engineering Technologies and Innovations, 1 (02), 435–465. Available at: https://www.academia.edu/124871455/Leveraging_AI_for_Scalable_Query_Processing_in_Big_Data_Environments
  16. Sakhipov, A., Omirzak, I., Fedenko, A. (2025). Beyond Face Recognition: A Multi-Layered Approach to Academic Integrity in Online Exams. Electronic Journal of E-Learning, 23 (1), 81–95. https://doi.org/10.34190/ejel.23.1.3896
  17. Kaveh, M., Mesgari, M. S. (2022). Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Architectures: A Comprehensive Review. Neural Processing Letters, 55 (4), 4519–4622. https://doi.org/10.1007/s11063-022-11055-6
  18. Mektepbayeva, A., Begisbayev, D., Seiitbek, R., Khaimuldin, N., Sakhipov, A., Rakhimzhanov, D. (2025). Adaptive Machine Learning Algorithms for Data Processing in Transportation Systems. 2025 IEEE 5th International Conference on Smart Information Systems and Technologies (SIST), 1–8. https://doi.org/10.1109/sist61657.2025.11139286
  19. Jumagaliyeva, A., Abdykerimova, E., Turkmenbayev, A., Serimbetov, B., Muratova, G., Yersultanova, Z., Zhiyembayev, Z. (2024). Identifying patterns and mechanisms of AI integration in blockchain for e-voting network security. Eastern-European Journal of Enterprise Technologies, 4 (2 (130)), 6–18. https://doi.org/10.15587/1729-4061.2024.305696
  20. Chinchanikar, S., Shaikh, A. A. (2022). A Review on Machine Learning, Big Data Analytics, and Design for Additive Manufacturing for Aerospace Applications. Journal of Materials Engineering and Performance, 31 (8), 6112–6130. https://doi.org/10.1007/s11665-022-07125-4
Оптимізоване адаптивне машинне навчання для динамічних потоків даних

##submission.downloads##

Опубліковано

2025-12-29

Як цитувати

Sakhipov, A., Mektepbayeva, A., Talgat, A., Rakhmetov, M., Adiyeva, A., Seitenov, A., Ualiyev, N., & Yelezhanova, S. (2025). Оптимізоване адаптивне машинне навчання для динамічних потоків даних. Eastern-European Journal of Enterprise Technologies, 6(3 (138), 15–25. https://doi.org/10.15587/1729-4061.2025.343635

Номер

Розділ

Процеси управління