Оптимізація складу окиснонікелевого електрода гібридного суперконденсатора
DOI:
https://doi.org/10.15587/1729-4061.2017.90810Ключові слова:
гідроксид нікелю, оксиднонікелевий електрод, питома ємність, суперконденсатор, разряд, політетрафторетилен, адгезіяАнотація
Для визначення впливу кількості зв’язуючої речовини на значення питомих ємностей були проведені зарядно-розрядні дослідження з різним вмістом політетраетілену в складі оксіднонікелевого електрода. Було показано, що додавання політетрафторетилену покращує адгезію активної маси до електрода, що збільшує значення питомої ємності. З іншого боку, велика кількість політетрафторетилену веде до прояву екрануючого ефекту, що зменшує питому ємність
Посилання
- Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: 10.1038/nmat2297
- Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: 10.1016/j.electacta.2007.01.011
- Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: 10.1007/s10008-008-0560-0
- Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: 10.1007/s10008-009-0984-1
- Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: 10.1007/s10008-014-2381-7
- Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: 10.1007/s11771-014-2218-7
- Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: 10.1021/am504530e
- Zhu, Z. (2016). Effects of Various Binders on Supercapacitor Performances. International Journal of Electrochemical Science, 8270–8279. doi: 10.20964/2016.10.04
- Baroutaji, A., Carton, J. G., Oladoye, A. M., Stokes, J., Twomey, B., Olabi, A. G. (2016). Ex-situ evaluation of PTFE coated metals in a proton exchange membrane fuel cell environment. Surface and Coatings Technology. doi: 10.1016/j.surfcoat.2016.11.105
- Sudaroli, B. M., Kolar, A. K. (2016). An experimental study on the effect of membrane thickness and PTFE (polytetrafluoroethylene) loading on methanol crossover in direct methanol fuel cell. Energy, 98, 204–214. doi: 10.1016/j.energy.2015.12.101
- Zhu, Y., Cao, C., Tao, S., Chu, W., Wu, Z., Li, Y. (2014). Ultrathin Nickel Hydroxide and Oxide Nanosheets: Synthesis, Characterizations and Excellent Supercapacitor Performances. Scientific Reports, 4, 5787. doi: 10.1038/srep05787
- Hu, M., Lei, L. (2006). Effects of particle size on the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)10]NO3. Journal of Solid State Electrochemistry, 11 (6), 847–852. doi: 10.1007/s10008-006-0231-y
- Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: 10.1016/j.electacta.2008.07.004
- Kovalenko, V. L., Kotok, V. A. (2015). The synthesis of nickel hydroxide by electrolysis from nickel nitrate solution in the slit diaphragm electrolyzer. Electrochemical properties. Collection of research papers of National mining university, 49, 181–186.
- Kotok, V. A., Koshel, N. D., Kovalenko, V. L., Grechanuk, A. A. (2008). The stability of aluminium-substituted alpha-nickel hydroxide. First Regional Symposium on Electrochemistry of South-East Europe “RSE-SEE”. Croatia Rovinj, 201–203.
- Kovalenko, V. L., Kotok, V. A., Bolotin, A. V. (2015). Method Development for Synthesis of Nickel Hydroxide with High Crystallinity. Providing the Study of the Characteristics of the Obtained Substance for Using with Accumulator and supercapacitors. Collectrion of research papers of National mining university, 48, 202–208.
- Кovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
- Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry. doi: 10.1007/s10008-016-3405-2
- Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: 10.1039/a905651c
- Becker, M. D., Cuscueta, D. J., Salva, H. R., Rodriguez Nieto, F., Ghilarducci, A. A., Visintin, A. (2012). Oxygen Evolution Nickel Hydroxide Electrodes in a Ni-MH Battery Prototype. Journal of New Materials for Electrochemical Systems, 15 (4), 277–282.
- Wang, X. (2004). Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. International Journal of Hydrogen Energy, 29 (9), 967–972. doi: 10.1016/j.ijhydene.2003.05.001
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2017 Valerii Kotok, Vadym Кovalenko
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.