Metallographic examination of hardened layers after surface treatments by highly concentrated plasma jet
DOI:
https://doi.org/10.31498/2225-6733.34.2017.105666Keywords:
plasma hardening, microstructure, gradient layer, grain size, martensite, micro-hardnessAbstract
The microstructure of carbon and alloy steels with various carbon contents before and after the gradient hardening by means of highly concentrated plasma jet have been investigated. It is shown that the resulting structure after the surface hardening has a substantially smaller grain size as compared to the bulk hardening. The steels with different carbon content, that is hypoeutectic steels 45 and 50HN, eutectic steels – M76, U8, hypereutectoid steels – 90HF, U10 have been researched. Processing was carried out under the optimal conditions to ensure the highest hardness of the surface without melting. Metalgraphical studies were carried out using optical and scanning electron microscopes. High-dispersed martensite is the main structural component for hypoeutectic steels. Despite the fact that the heating temperature and the cooling rate in different parts of the plasma exposure zone differ greatly, the structure of the tempered zone is uniform by both the degree of dispersion and by the values of hardness. Plasma treatment of eutectic steels results in fine-grained structure of martensite of mainly lamellar morphology. High-dispersed martensite with microparticles of secondary carbides is characteristic of the hardened zones for hypereutectic steels. But austenite grains do not grow at heating as it usually happens in bulk hardening. The structure of the transition zone corresponds to part-hardened steels. So excess ferrite as well as martensite retains in hypoeutectic steels while excess cementite retains in hypereutectic steels. Eutectic steels are free from the intercritical interval, and the transition zone does not practically develop, there being a very sharp boundary between the zone of full hardening and the parent metal. Due to this structure of the plasma hardening zone of the surface layer there arises 3,5...4,5-fold increase in the hardness of the steel as compared with the normalized condition. This is due to the increase in the degree of saturation of the solid solution with alloying elements and carbon, and size-reduction of the hardened structureReferences
Список использованных источников (ГОСТ):
Григорьянц А.Г. Методы поверхностной лазерной обработки / А.Г. Григорьянц, А.Н. Сафонов. – М. : Высшая школа, 1987. – 191 с.
Гуляев А.П. Металловедение / А.П. Гуляев. – М. : Металлургия, 1986. – 544 с.
Самотугин С.С. Плазменное упрочнение инструментальных материалов / С.С. Самотугин, Л.К. Лещинский. – Донецк : Новый мир, 2002. – 338 с.
Самотугин С.С. Структура и характер разрушения сварных соединений, наплавленных и упрочненных материалов // С.С. Самотугин, Л.К. Лещинский, Н.Х. Соляник. – Мариуполь : ПГТУ, 1996. – 179 с.
References:
Grigoryanc А.G. Metody poverkhnostnoi lazernoi obrabotki [Methods of surface laser treatment]. Мoscow, Vicshaya shkola Publ., 1987. 191p. (Rus.)
Gulyaev А.P. Metallovedenie [Physical metallurgy]. Мoscow, Меtаllurgiia Publ., 1986. 544 p. (Rus.)
Samotugin S.S. Plazmennoe uprochnenie instrumentalnykh materialov [Plasma hardening of tool materials]. Donetsk, Noviy mir Publ., 2002. 338 p. (Rus.)
Samotugin S.S. Struktura i kharakter razrusheniia svarnikh soedinenii, naplavlennykh i uprochnionnikh materiallov [The structure and nature of the destruction of the welded joints, weld and hardened materials]. Mariupol, PGTU Publ., 1996. 179 p. (Rus.)
Downloads
How to Cite
Issue
Section
License
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







