Modelling stock markets forecasting using neural networks
DOI:
https://doi.org/10.31498/2225-6733.35.2017.125631Keywords:
forecasting, stock markets, price dynamics, neural networks, methods, analysis, network parameters, software packages, research, rules of the gameAbstract
This article is devoted to the substantiation of stock markets forecasting modelling using a neural network that describes the principles of the simulation algorithm implementation and the prospects for its application. The problems of traditional and classical forecasting systems, the theory of neural networks, the problems of improving the methods of analysis and improving the accuracy of stock market forecasts, simulating fuzzy models on the basis of sets of independent variables and the most informative factors of influence have been considered. The advantages of computational methods are analyzed for making up artificial neural networks simulating models that forecast exchange rates. Formulas for using the chosen forecasting method have been given as well as an explanation for the regression analysis. There exists an optimal combination for the assets and the most profitable investment period for each asset. The article emphasizes the growing rejection of the widely used classical economy and mathematical methods and models for adequate analysis and forecasting the development of financial and economic systems, which do not make it possible to effectively prevent significant and lastung crises at the stock markets. The scientific substantiation of the methodology for applying predictive modelling in choosing support system for fuzzy logic algorithms has been described. On the basis of a neural network system price dynamics forecasting at the stock market is simulatedReferences
Список використаних джерел:
Кундас О.А. Аппроксимация функций нейронными сетями в метрических пространс-твах [Электронный ресурс] / О.А. Кундас. – Режим доступа: http://elib.bsu.by/handle/123456789/115982.
Господарчук С.А. Использование нейронных сетей в маркетинговых исследованиях / С.А. Господарчук // Вестник Нижегородского университета им. Н.И. Лобачевского. – 2001. – № 1. – С. 50-54. – (Серия: Экономика и финансы). – Режим доступа: http://docplayer.ru/28492922-Ispolzovanie-neyronnyh-setey-v-marketingovyh-issl-ed-ovaniyah-gospodarchuk-s-a.html.
Мозолевська М.О. Використання нейронних мереж для прогнозування у фінансовій сфері [Електронний ресурс] / М.О. Мозолевська, О.В. Ставицький // Актуальні проблеми економіки та управління. – 2017. – № 11. – Режим доступу: http://ape.fmm.kpi.ua/article/view/102584.
Галещук С. Штучні нейронні мережі у прогнозуванні валютного ринку / С. Галещук // Вісник Київського національного торговельно-економічного університету. – 2016. – № 3. – С. 101-114. – Режим доступу: http://visnik.knteu.kiev.ua/files/2016/03/9.pdf.
Önder E. Forecasting macroeconomic variables using artificial neural network and traditional smoothing techniques / E. Önder, B. Firat, A. Hepsen // Journal of Applied Finance & Banking. – 2013. – Vol. 3. – № 4. – Pp. 73-104. – Mode of access: https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=2264379.
Lam M. Neural network techniques for financial performance prediction: integrating fundamental and technical analysis / M. Lam // Decision Support Systems. Special issue: Data mining for financial decision making. – 2004. – Vol. 37. – Issue 4. – Pp. 567-581. – Mode of access: https://wenku.baidu.com/view/65e4fbdb6f1aff00bed51ef3.html.
Kuan C. Artificial neural networks: an econometric perspective / C. Kuan, H. White. – 1991. – 98 p. – Mode of access: https://ru.scribd.com/document/175456696/Artificial-Neural-Networks-an-Econometric-Perspective.
References:
Kundas O.A. Approksimatsiia funktsii neironnymi setiami v metricheskikh prostranstvakh (Approximation of functions by neural networks in metric spaces) Available at: http://elib.bsu.by/handle/123456789/115982 (accessed 15 June 2017).
Gospodarchuk S.A. Ispol'zovanie neironnykh setei v marketingovykh issledovaniiakh [The use of neural networks in marketing research]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Seriia: Ekonomika i finansy – Vestnik of Lobachevsky State University of Nizhni Novgorod. Series: Economics and finance, 2001, no.1, pp. 50-54. Available at: http://docplayer.ru/28492922-Ispolzovanie-neyronnyh-setey-v-marketingovyh-issl-ed-ovaniyah-gospodarchuk-s-a.html (accessed 28 June 2017).
Mozolevskaya M.O., Stavits'kii O.V. Vikoristannia neironnikh merezh dlia prognozuvannia u fіnansovіi sferі [Use of neural networks for forecasting in the financial sphere]. Aktual'nі problemi ekonomіki ta upravlіnnia – Actual problems of economics and management, 2017, no.11 Available at: http://ape.fmm.kpi.ua/article/view/102584 (accessed 10 July 2017).
Galeshchuk S. Shtuchnі neironnі merezhі u prognozuvannі valiutnogo rinku [Artificial neural networks in the forecasting of the currency market]. Vіsnik Kiїvs'kogo natsіonal'nogo torgovel'no-ekonomіchnogo unіversitetu – Herald of Kyiv National University of Trade and Economics, 2016, no.3, pp. 101-114 Available at: http://visnik.knteu.kiev.ua/files/2016/03/9.pdf (accessed 25 August 2017).
Önder E., Fiat B. Hepsen A. Forecasting macroeconomic variables using artificial neural net-work and traditional smoothing techniques. Journal of Applied Finance & Banking, 2013, vol. 3, no.4, pp. 73-104 Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264379 (accessed 10 September 2017).
Lam M. Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision Support Systems. Special issue: Data mining for financial decision making, 2004, vol. 37, iss. 4, pp. 567-581 Available at: https://wenku.baidu.com/view/
e4fbdb6f1aff00bed51ef3.html (accessed 01 October 2017).
Kuan C., White H. Artificial neural networks: an econometric perspective. 1991, 98 p. Available at: https://ru.scribd.com/document/175456696/Artificial-Neural-Networks-an-Econometric-Perspective (accessed 01 October 2017).
Downloads
How to Cite
Issue
Section
License
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







