Mathematical modelling of heat-resistant nickel alloys high temperature corrosion

Authors

  • О. A. Glotka Zaporozhye National Technical University, Zaporozhye, Ukraine
  • S. V. Haiduk Zaporozhye National Technical University, Zaporozhye, Ukraine

DOI:

https://doi.org/10.31498/2225-6733.38.2019.181273

Keywords:

heat-resistant nickel alloys, average speed of corrosion, ratio of alloying elements

Abstract

The mathematical modelling of the average corrosion rate () or nickel alloys with different alloying systems (for mono-, directed- and equilibrium crystallization) under synthetic ash conditions at different temperatures has been carried out. Since modern heat-resistant nickel alloys have complex multicomponent compositions, in which all the elements influence on corrosion complexly, the high temperature corrosion (HTC) stability was evaluated by the value of the known parameter Pks(surface resistance coefficient). This made it possible to compare the level of stability of alloys with different alloying schemes. However, this parameter does not cover all the alloying elements that are present in the heat-resistant nickel alloys. Therefore, as a result of analysis and processing of experimental data, the ratio of alloying elements to assess the corrosion resistance has been proposed; this ratio considers the complex influence of the main components of the alloy. Since high temperature corrosion (HTC) is related to the presence of certain elements in the alloy and their concentration, the ratio Kps (surface resistance coefficient) makes it possible to evaluate more adequately the average corrosion rate at different temperatures for multi-component nickel systems. The dependence of the average corrosion rate on Kps for monocrystalline alloys is straightforward, due to the specific character of the alloying systems of this class materials. Characteristic for them is a significantly less amount of chromium (up to 10% by weight) is characteristic of them and a decrease in the content (and in some alloys, absence) of titanium as well, which results in a significant reduction in the high temperature corrosion (HTC)-stability of the material. It has been established that to ensure the required level of high temperature corrosion (HTC) stability of alloys of directed and equilibrium crystallization, the value of the ratio should be not less than Kps ≥ 2, which will provide a non-destructive dense film of corrosion products. So, for the alloys with Kps ≤ 2 the formation of a thick layer of corrosion products, which is easily separated during the operation is characteristic. The obtained regression models give an opportunity to predict the average speed of corrosion depending on the alloying system, both for the development of new heat- resistant nickel alloys for directed crystallization, and in improving the composition of the known industrial alloys within the brand composition. The obtained correlation dependencies are exponential in nature

Author Biographies

О. A. Glotka, Zaporozhye National Technical University, Zaporozhye

Кандидат технічних наук, доцент

S. V. Haiduk, Zaporozhye National Technical University, Zaporozhye

Доктор технічних наук

References

Список использованных источников (ГОСТ):

Гишваров А.С. Метод ускоренного моделирования высокотемпературной газовой коррозии сопловых лопаток ГТД / А.С. Гишваров, М.Н. Давыдов // Вестник Уфимского государственного авиационного технического университета. – 2006. – Т. 7. – № 2 (15). – С. 51-60.

Никитин В.И. Расчет жаростойкости металлов / В.И. Никитин. – М. : Машиностроение, 1976. – 208 с.

Гецов Л.Б. Материалы и прочность деталей газовых турбин / Л.Б. Гецов. – М. : Недра, 1996. – 591 с.

Гишваров А.С. Теория ускоренных ресурсных испытаний технических систем / А.С. Гишваров. – Уфа : Гилем, 2000. – 338 с.

Никитин В.И. Коррозия и защита лопаток газовых турбин / В.И. Никитин – Л. : Машиностроение, 1987. – 272 с.

Suzuki A.S. Prediction of initial oxidation behavior of ni-base single crystal superalloys: a new oxidation map and regression analysis / A.S. Suzuki, K. Kawagishi, T. Yokokawa, T. Kobayashi // Superalloys : 12-th International Simposium on Superalloys. – 2012. – Pp. 321-329. – Mode of access: DOI: 10.1002/9781118516430.ch35.

Pettit F.S. Oxidation and hot corrosion of superalloys / F.S. Pettit, G.H. Meier // Superalloys : 5-th International Simposium on Superalloys. – 1984. – Pp. 651-668.

Никитин В.И. Влияние состава никелевых сплавов на их коррозионную стойкость в золе газотурбинного топлива / В.И. Никитин, М.Б. Ревзюк, И.П. Комисарова // Труды ЦКТИ им. И.И. Ползунова. – Л., 1978. – Вып. 158. – С. 71-74.

Deepa Mudgal High Temperature Cyclic Oxidation Behavior of Ni and Co Based Superalloys / Deepa Mudgal, Surendra Singh, Satya Prakash // Journal of Minerals & Materials Characterization & Engineering. – 2012. – Vol. 11, No. 3. – Pp. 211-219. – Mode of access: DOI: 10.4236/jmmce.2012.113017.

Brenneman J. Oxidation behavior of GTD111 Ni-based superalloy at 900°C in air / J. Bren-neman, J. Wei, Z. Sun, L. Liu // Corrosion Science. – 2015. – № 100. – Pp. 267-274. – Mode of access: DOI: 10.1016/j.corsci.2015.07.031.

Жуков А.А. Оценка эксплуатационной пригодности жаропрочных сплавов для ГТД и ГТУ / А.А. Жуков, О.А. Смирнова // Двигатели аэрокосмических летательных аппаратов. – 2005. – № 19. – С. 60-66.

References:

Gishvarov A.S., Davydov M.N. Metod uskorennogo modelirovaniia vysokotemperaturnoi gazovoi korrozii soplovykh lopatok GTD Method of accelerated simulation of high-temperature gas corrosion of nozzle blades for gas turbine engines. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta – Bulletin of Ufa State Aviation Technical University, 2006, vol. 7, № 2 (15), pp. 51-60. (Rus.)

Nikitin V.I. Raschet zharostoikosti metallov Calculation of heat resistance of metals. Moscow, Mashinostroenie Publ., 1976. 208 p. (Rus.)

Getsov L.B. Materialy i prochnost’ detalei gazovykh turbin Materials and strength of gas turbine components. Moscow, Nedra Publ., 1996. 591 p. (Rus.)

Gishvarov A.S. Teoriia uskorennykh resursnykh ispytanii tekhnicheskikh sistem Theory of Accelerated Life Tests of Technical Systems. Ufa, Gilem Publ., 2000. 338 p. (Rus.)

Nikitin V.I. Korroziia i zashchita lopatok gazovykh turbin Corrosion and protection of gas turbine blades. Leningrad, Mashinostroenie Publ., 1987. 272 p. (Rus.)

Suzuki A.S., Kawagishi K., Yokokawa T., Kobayashi T. Prediction of initial oxidation behavior of ni-base single crystal superalloys: a new oxidation map and regression analysis. Proceedings of the 12-th International Simposium on Superalloys, 2012, pp. 321-329. doi: 10.1002/9781118516430.ch35.

Pettit F.S., Meier G.H. Oxidation and hot corrosion of superalloys. Proceedings of the 5-th International Simposium on Superalloys, 1984, pp. 651-668.

Nikitin V.I., Revziuk M.B., Komisarova I.P. Vliianie sostava nikelevykh splavov na ikh korrozionnuiu stoikost’ v zole gazoturbinnogo topliva Effect of the composition of nickel alloys on their corrosion resistance in gas turbine ash. Trudy TsKTI im. I.I. Polzunova – Works of CKTI named by I.I. Polzunova, Leningrad, 1978, no. 158, pp. 71-74. (Rus.)

Deepa Mudgal, Surendra Singh, Satya Prakash. High Temperature Cyclic Oxidation Behavior of Ni and Co Based Superalloys. Journal of Minerals & Materials Characterization & Engineering, 2012, vol. 11, no. 3, pp. 211-219. doi: 10.4236/jmmce.2012.113017.

Brenneman J., Wei J., Sun Z., Liu L. Oxidation behavior of GTD111 Ni-based superalloy at 900°C in air. Corrosion Science, 2015, no. 100, pp. 267-274. doi: 10.1016/j.corsci.2015.07.031.

Zhukov A.A., Smirnova O.A. Otsenka ekspluatatsionnoi prigodnosti zharoprochnykh splavov dlia GTD i GTU Evaluation of the operational suitability of heat-resistant alloys for gas turbine engines and gas turbines. Dvigateli aerokosmicheskikh letatel'nykh apparatov – Aerospace Aircraft Engines, 2005, no. 19, pp. 60-66. (Rus.)

How to Cite

Glotka О. A., & Haiduk, S. V. (2019). Mathematical modelling of heat-resistant nickel alloys high temperature corrosion. Reporter of the Priazovskyi State Technical University. Section: Technical Sciences, (38), 30–38. https://doi.org/10.31498/2225-6733.38.2019.181273