Розпізнавання облич за допомогою згорнутої нейронної мережі
DOI:
https://doi.org/10.31498/2225-6733.41.2020.226118Ключові слова:
розпізнавання обличчя, нейронні мережі, алгоритм ХаараАнотація
В статті розглядається тема розпізнавання обличчя за допомогою згорнутої нейронної мережі, яка може на основі проведеного тренування з обмеженою кількістю світлин розпізнати та ідентифікувати людину в реальному часі. В рамках роботи було проведено аналіз наукових публікацій існуючих методів розпізнавання та вилучення об’єктів на зображені. Виявлено, що використання вже існуючого апарату класифікаторів Хаара має ряд недоліків, тому необхідно покращити та модифікувати цей класифікатор. Були визначені основні критерії, що необхідно модифікувати в стандартному класифікаторі для його покращення. Був виявлений загальний алгоритм для роботи зі зображенням при розпізнаванні. Для реалізації була побудована математична модель нейронної мережі та класифікатора. В експериментальних дослідженнях було проведено навчання нейронної мережі та її тестування на різних варіантах відображення обличчя на світлинах. Для визначення адекватності роботи розробленої згорнутої нейронної мережі було проведено тестування на визначення помилок.
Посилання
Перелік використаних джерел (ДСТУ):
Facebook’s facial recognition now looks for you in photos you’re not tagged in [Electronic resource]: [Website]. – Electronic data. – Mode of access: https://www.theverge.com/facebook-facial-recognition-tagging-photos.
Andrew Heinzman. How Does Facial Recognition Work? [Electronic resource]: [Website]. – Electronic data. – Режим доступу: https://www.howtogeek.com/427897/how-does-facial-recognition-work/.
Палій І.О. Нейромережний підхід до комп’ютерного розпізнавання облич / І.О. Палій, А.О. Саченко, С.Г. Антощук, Т.О. Бурак // Штучний інтелект. – 2010. – № 3. – С. 378-387.
Error Rates in Users of Automatic Face Recognition Software / D. White, J.D. Dunn, A.C. Schmid, R.I. Kemp // PLOS ONE. – 2015. – Vol. 10(10). – Pp. 1-14. – Mode of access: https://doi.org/10.1371/journal.pone.0139827.
Haghighat M. Low Resolution Face Recognition in Surveillance Systems Using Discriminant Correlation Analysis / M. Haghighat, M. Abdel-Mottaleb // 12th IEEE International Confer-ence on Automatic Face & Gesture Recognition (FG 2017). – 2017. – Pp. 912-917. – Mode of access: https://doi.org/10.1109/FG.2017.130.
Cootes T. Active appearance models / T. Cootes, G. Edwards, C. Taylor // Proceedings of the European Conference on Computer Vision. – 1998. – Vol. 2. – Pp. 484-498.
Convolutional Neural Networks for Visual Recognition [Electronic resource]: [Website]. – Electronic data. – Mode of access: https://www.cs231n.github.io.
Pat. 2002/0102024A1 US, Int. Cl. G 06 K 9/62. Method and system for object detection in digital images / M.J. Jones, P. Viola. – № 09/992,795; filed 12.11.2001; pub. date 01.08.2002. – 19 p.
Boosting and AdaBoost for Machine Learning [Electronic resource]: [Website]. – Electronic data. – Mode of access: https://machinelearningmastery.com/boosting-and-adaboost-for-machine-learning/.
Каргин А.А. Введение в интеллектуальные машины. Кн. 1. Интеллектуальные регуля-торы / А.А. Каргин. – Донецк : Норд-Пресс, ДонНУ, 2010. – 526 с.
References:
Facebook’s facial recognition now looks for you in photos you’re not tagged in Available at: https://www.theverge.com/facebook-facial-recognition-tagging-photos (accessed 15 June 2020).
Andrew Heinzman. How Does Facial Recognition Work? Available at: https://www.howtogeek.com/427897/how-does-facial-recognition-work/ (accessed 10 June 2020)
Paliy I.O., Sachenko A.O., Antoshchuk S.H., Burak T.O. Neyromerezhniy pidkhid do komp’yuternoho rozpiznavannya oblych [Neural network approach to computer facial recognition]. Shtuchnyy intelekt – Artificial Intelligence, 2010, no. 3, pp. 378-387.
White D., Dunn J.D., Schmid A.C., Kemp R.I. Error Rates in Users of Automatic Face Recognition Software. PLOS ONE, 2015, vol. 10 (10), pp. 1-14. doi: 10.1371/journal.pone.0139827.
Haghighat M., Abdel-Mottaleb M. Low Resolution Face Recognition in Surveillance Systems Using Discriminant Correlation Analysis. 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), 2017, pp. 912-917. doi: 10.1109/FG.2017.130.
Cootes T., Edwards G., Taylor C. Active appearance models. Proceedings of the European Conference on Computer Vision, 1998, vol. 2, pp. 484-498.
Convolutional Neural Networks for Visual Recognition Available at: https://www.cs231n.github.io (accessed 10 August 2020).
Viola P., Jones M.J. Method and system for object detection in digital images. Patent 2002/0102024A1, 2002.
Boosting and AdaBoost for Machine Learning Available at: https://machinelearningmastery.com/boosting-and-adaboost-for-machine-learning/ (accessed 20 July 2020).
Kargin A.A. Vvedeniye v intellektual’nyye mashiny. Kniga 1. Intellektual’nyye regulyatory [Introduction to intelligent machines. Book 1. Intellectual regulators]. Donetsk, Nord-Press, DonNU Publ., 2010. 526 p. (Rus.)
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Журнал "Вісник Приазовського державного технічного університету. Серія: Технічні науки" видається під ліцензією СС-BY (Ліцензія «Із зазначенням авторства»).
Дана ліцензія дозволяє поширювати, редагувати, поправляти і брати твір за основу для похідних навіть на комерційній основі із зазначенням авторства. Це найзручніша з усіх пропонованих ліцензій. Рекомендується для максимального поширення і використання неліцензійних матеріалів.
Автори, які публікуються в цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, яка дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи в цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди, які стосуються неексклюзивного поширення роботи в тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи в цьому журналі.