The principles of creating combined technologies for surface hardening of parts and tools
DOI:
https://doi.org/10.32782/2225-6733.43.2021.10Keywords:
surface, complex hardening, combined hardening, plasma jet, structure, crack resistanceAbstract
The increase in the complex of operational properties of materials is achieved by performing a combined surface hardening, including the sequential action of various technological methods. The most promising are the technologies of combined modification based on the energy impact of highly concentrated heat sources. At the same time the problem of strengthening of large-sized heavy-loaded products and the tool is especially actual. The influence of the combined induction-plasma hardening of 75X2МФ steel samples on the nature of structural transformations, hardness and fracture toughness was studied. Plasma hardening after induction hardening increases the hardness from HV 780 to HV 930 and the coefficient of dynamic crack resistance from 4,63 MPa ∙ to 9,84 MPa ∙ , which is due to the formation of a surface layer with a highly dispersed structure. An additional factor in increasing crack resistance is the inhibition of cracks at the boundaries of the layers of plasma and induction hardening. An additional increase in the crack resistance of tool steel with combined hardening can be achieved due to the intermediate volume tempering at 300℃ for 1 hour after hardening of the microwave before plasma hardening. This is due to the fuller course of the transformation in the inner zone of high-speed tempering during the subsequent plasma treatment and increase the ductility of the metal in this zone. The structure and texture of the fracture of the inner layers during processing with intermediate tempering are the same as when processing without it, and the destruction also takes place by a «multiple» mechanism. The results of the study show the effectiveness of the combined induction-plasma hardening of the tool: in comparison with the plasma hardening in the initial state and induction hardening, significantly increases the thickness of the hardened layer, hardness, crack resistance and wear resistance of the surface
References
Гришкевич А.Д. Разработка комбинированной технологии упрочнения деталей / А.Д. Гришкевич // Технічна механіка. – 2017. – № 3. – С. 100-114.
Пантелеенко Ф.И. Методика разработки комбинированных упрочняющих технологических процессов / Ф.И. Пантелеенко, В.А. Оковитый // Упрочняющие технологии и покрытия. – 2010. – № 10. – С. 36-42.
Степанова Т.Ю. Технологии поверхностного упрочнения деталей машин / Т.Ю. Степанова. – Иваново: Иван. гос. хим.-технол. ун-т., 2009. – 64 с.
Эксплуатационные свойства инструментальных сталей после комплексного объемно-поверхностного упрочнения / С.С. Самотугин, А.В. Пуйко, Н.Х. Соляник, Е.Б. Локшина // Металловедение и термическая обработка металлов. – 1997. – № 5. – С. 5-6.
Самотугин С.С. Особенности торможения разрушения в слоистых композиционных материалах, полученных наплавкой или поверхностной закалкой / С.С. Самотугин // Физика и химия обработки материалов. – 1998. – № 1. – С. 64-69.
Киричек А.В. Технология комбинированного упрочнения волной деформации и цементацией конструкционных низколегированных сталей / А.В. Киричек // Наукоемкие технологии в машиностроении. – 2017. – № 8. – С. 30-35. – Режим доступа: https://doi.org/10.12737/article_5971db7fe454d8.56390820.
Эдигаров В.Э. Комбинированная электромеханоультразвуковая обработка поверхностных слоев деталей машин / В.Э. Эдигаров, В.Ш. Алимбаева // Вестник СибАДИ. – 2017 – Вып. 2. – С. 42-47. – Режим доступа: https://doi.org/10.26518/2071-7296-2017-2(54)-42-47.
Шматов А.А. Комбинированное объемно-поверхностное упрочнение стального режущего инструмента / А.А. Шматов // Вестник Брестского государственного технического университета. – 2008. – № 4. – С. 16-21.
Чудина О.В. Модифицирование стальной поверхности с использованием лазерного нагрева / О.В. Чудина // Сварочное производство. – 2016. – № 3. – С. 24-28.
Чирков А.А. Лазерно-плазменное наноструктурирование поверхностных слоев сталей при атмосферных условиях / А.А. Чирков // Фотоника. – 2008. – № 4. – С. 28-35.
Головин Г.Ф. Высокочастотная термическая обработка / Г.Ф. Головин, М.М. Замятин. – Л.: Машиностроение, 1990. – 239 с.
Дубняков В.Н. Упрочнение лазерным излучением предварительно обработанных материалов / В.Н. Дубняков, И.Г. Воробьева // Электронная обработка материалов. – 1987. – № 6. – С.64-67.
Фудзин Т. Механика разрушения композиционных материалов / Т. Фудзин, М. Дзако; пер. с яп. под ред. А.И. Бурлаева. – М. : Мир, 1982. – 232 с.
Downloads
Published
How to Cite
Issue
Section
License
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







