The phenomenon of thermodiffusion in liquid and solid metals in the works of O. M. Skrebtsov
DOI:
https://doi.org/10.31498/2225-6733.48.2024.310684Keywords:
concentration gradient, temperature gradient, thermodiffusion, heat of transfer for thermodiffusion, temperatureAbstract
The year 2024 marks the 100th anniversary of a world-renowned scientist, our countryman, Professor Olexandr Mikhailovich Skrebtsov. In addition to research on the use of radioactive isotopes in metallurgy and the development of the theory of the liquid state of metal melts, he paid considerable attention to the phenomenon of thermodiffusion in liquid and solid metals. This paper is devoted to the analysis of this part of the scientific heritage of O. M. Skrebtsov. The movement of atoms under the action of a temperature gradient (thermodiffusion) occurs during various natural phenomena and in many technological processes. However, when studying the driving forces and mechanisms of thermodiffusion, as a rule, the academic approach prevailed. This allowed the theory of thermodiffusion to be well enough developed concerning gases, salt solutions, and solid metals. This article is focused on the analysis of research aimed at the possibility of practical use of this phenomenon to improve the service life of parts operating under conditions of a temperature gradient and optimize processes occurring with a temperature gradient. Such processes occur in metallurgical units, accompanying bimetallic casting, welding, surfacing, etc. Based on the analysis of the experimental data available in the literature, a relationship between the heat of thermodiffusion and the ratio of the atomic radii of the diffusing elements, Rd, and the base metal, Rb, was found. The fundamental possibility of using thermodiffusion for controlling the desulfurization processes in liquid cast iron and creating protective coatings on gray cast iron parts during their operation at high temperatures was also shown
References
Ludwig C. Diffusion Zwischen Ungleich Erwwarmten Orten Gleich Zusammengestzter Losun gen. Sitzungsberichte der Akademie der Wissenschaften mathematisch-naturwissenschaftliche Klasse. 1856. No. 65. Pp. 539.
Soret C. Concentrations differentes d'une dissolution dont deux parties sont a'des temperatures differentes. Archives des sciences physiques et naturelles. 1879. No. 2. Pp. 48.
Tyndall J. Scientific addresses. New Haven: C.C. Chatfield & Co, 1870. 74 p.
Rahman M. A., Saghir M. Z. Thermodiffusion or Soret effect: Historical Review. International Journal of Heat and Mass Transfer. 2014. No. 73. Pp. 693-705. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.057.
Chapman S. Thermal Diffusion in Ionized Gases. Proceedings of the Physical Societ. 1958. No. 72(3). Pp. 353-362. DOI: https://doi.org/10.1088/0370-1328/72/3/305.
Ajrapetyan M. Yu., Uryupin S. A. Anomalous diffusion and thermodiffusion of light ions in a non-isothermal plasma. Letters to the Journal of Experimental and Theoretical Physics. 2008. Vol. 87(12). Pр. 777-781. DOI: https://doi.org/10.1134/S0021364008120060.
Shewmon P. G. Diffusion in solids. New York : McGraw-Hill Book Company, Inc., 1963. 203 p.
Bokshtein B. S. Diffusion in metals. Springer Nature, 1978. 248 p.
Nowacki W. Certain problems of thermodiffusion in solids. Archive of Applied Mechanics. 1971. No. 26. Pp. 731-755.
Nowacki W. Dynamical problems of thermodiffusion in solids. The Bulletin of the Polish Academy of Sciences Technical Sciences. 1974. No. 22. Part I. Pp. 55-64; Part II, pp. 205-211.
Nowacki W., Olesiak Z. S. Termodyfuzja w ciałach stałych. Warszawa : PWN, 1991. 289 p.
Olesiak Z. S. Problems of thermodiffusion of deformable solids. Materials Science. 1998. No. 34. Pp. 297-303. DOI: https://doi.org/10.1007/BF02355619.
Термодиффузия элементов в металлах, обобщение экспериментальных данных по тепловым эффектам процесса / А.М. Скребцов и др. Процессы литья. 2015. № 2. C. 64-69.
Asaro R. J., Farkas D., Kulkarni Ya. The Soret effect in diffusion in crystals. Acta Materialia. 2008. Vol. 56. Pp. 1243-1256. DOI: http://dx.doi.org/10.1016/j.actamat.2007.11.019.
Ahadi A., Varenbergh S., Saghir M. Z. Measurement of Soret coefficients for a ternary hydro-carbon mixture in low gravity environment. The Journal of Chemical Physics. 2013. Vol. 138(20). Pp. 1-17. DOI: https://doi.org/10.1063/1.4802984.
Ahadi A., Saghir M. Z. An extensive heat transfer analysis using Mach Zehnder interferometry during thermodiffusion experiment on board the International Space Station. Applied Thermal Engineering. 2014. Vol. 62. Pp. 351-364. DOI: https://doi.org/10.1016/j.applthermaleng.2013.09.048.
Walker D., DeLong S. E. Soret separation of mid-ocean ridge basalt magma. Contributions to Mineralogy and Petrology. 1982. Vol. 79. Pp. 231-240. DOI: https://doi.org/10.1007/BF00371514.
Aleksander K. Isotope separation by thermodiffusion in liquid phase. Advances in physical science. 1962. Vol. 24(8). Pp. 711-748.
Chepak-Gizbrekht M. V. Estimation of Thermodiffusion Influence on Formation of Transition Zones during Brazing. Key Engineering Materials. 2016. Vol. 712. Pp. 379-383. DOI: https://doi.org/10.4028/www.scientific.net/KEM.712.379.
Скребцов А. М., Дан Л. А., Павлюк Б. А. Формирование переходной зоны в литом биметалле на основании чугунов различных составов. Теория и практика процессов получения биметаллических и многослойных отливок. 1987. C. 31-35.
Дан Л. А. Технологический процесс восстановления шахтных межпутевых роликов переливом жидкого металла по изношенной поверхности : автореф. дис. … канд. техн. наук : 05.16.04. Киев, 1988. 18 с.
Alexandrov D. V., Aseev D. L. Directional solidification with a two-phase zone: thermodiffusion and temperature-dependent diffusivity. Computational Materials Science. 2006. Vol. 37(1). Pp. 1-6. DOI: https://doi.org/10.1016/j.commatsci.2005.12.019.
Alexandrov D. V., Pinigin D. A. On the Theory of Dendritic Growth: Soret and Temperature Dependent Diffusion Effects. Metallurgy (Metally). 2013. Vol. 2013. No. 2. Pp. 123-129. DOI: https://doi.org/10.1134/S0036029513020031.
Bokshtejn B.S., Bokshtejn S.Z., Zhuhovickij A.A. Thermodynamics and kinetics of diffusion in solids. Springer Nature, 1974. 280 p.
Кузьменко П. П. Электроперенос, термоперенос и диффузия в металлах. Киев : Вища школа, 1983. 151 c.
Дан Л. А., Скребцов А. М. Анализ движущих сил и механизмов термодиффузии элементов в сером чугуне. Вестник Приазовского государственного технического университета. 2007. Вып. 17. С. 89-92.
Скребцов А. М., Дан Л. А., Вылегжанина Т. В. Изменение свойств серого чугуна после термоциклирования с градиентом температуры. Теория и практика металлургических процессов. Киев : Издательство УМК, 1990. C. 94-102.
Термодиффузия и электроотрицательность элементов в металлах / Скребцов А. М., Терзи В. В., Качиков А. С., Дан Е. Л. Вісник Приазовського державного технічного університету. 2012. Вып. 24. C. 131-135.
Дан Л. А. Использование ФГМ как способ повышения разгаростойкости чугунных и стальных отливок. Вісник Донбаської державної машинобудівної академії. 2009. № 15(1). C. 112-115.
Sondermann E., Kargl F., Meyer A. In situ Measurement of Thermodiffusion in Liquid Alloys. Physical Review Letters. 2019. Vol. 123. 255902. DOI: https://doi.org/10.1103/PhysRevLett.123.255902.
Jafar-Salehi E., Eslamian M., Saghir M. Z. Effect of thermodiffusion on the fluid flow, heat transfer, and solidification of molten metal alloys. Engineering Science and Technology. 2016. Vol. 19(1). Pp. 511-517. DOI: https://doi.org/10.1016/j.jestch.2015.09.007.
Скребцов О. М., Терзі В. В., Проценко Д. М. Унікальний експеримент із термодифузії елементів у рідкому чавуні. Чорна металургія. 2015. № 58(10). С. 785-786. DOI: https://doi.org/10.17073/0368-0797-2015-10-785-786.
Lepihin L. A., Manaenko I. P. The condition of the scaffold after blowing of one of the blast furnaces of Magnitogorsk Iron and Steel Works. Steel in translation. 1961. No. 3. Pp. 41-48.
Стародубов К. Ф., Свечников В. Н. Изложницы. Харьков, Днепропетровск : Сталь, 1932. 188 c.
Wróbel T. Bimetallic layered castings alloy steel – grey cast iron. Archives of Materials Science and Engineering. 2011. Vol. 48(2). Pp. 118-125.
Костенко Г. Д., Брик В. Б., Горский В. В. Основные закономерности диффузионного перераспределения легирующих элементов при формировании переходных слоев биметаллических отливок на основе железа. Теория и практика процессов получения биметаллических и многослойных отливок. Киев: Институт Проблем Литья, 1987. C. 10-15.
Downloads
Published
How to Cite
Issue
Section
License
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







