Refinement of the train formation plan calculation model by considering the effect of switchyard stations' workload
DOI:
https://doi.org/10.31498/2225-6733.48.2024.310712Keywords:
train formation plan, rail transport, mathematical model, genetic algorithms, switchyard station congestion, epistemic uncertaintyAbstract
The article is dedicated to improving the mathematical model for calculating the freight train formation plan (TFP) on the railway network of JSC «Ukrzaliznytsia». The system of organizing freight flows in rail transport is based on strategic planning through TFP, which allows increasing the efficiency of using cars and infrastructure, reducing delays in forming trains, and reducing their transportation time. At the same time, the existing TFP calculation models have certain shortcomings, in particular, the complexity of taking into account the numerous factors that influence the process of train formation. This study proposes a refinement of the TFP mathematical model by including the dependence of wagon-hour costs on the function of the variable utilization factor of technical stations. An automated calculation method developed by one of the authors, based on the application of the mathematical apparatus of genetic algorithms, was used for the calculations. A comparative analysis of the calculation results using the standard and improved models showed that taking into account the impact of station congestion allowed reducing costs by 405.7 wagon-hours, or 3.5% of the total costs for train accumulation and reformatting. The application of the proposed refinement of the TFP model allows the railway operator to obtain more accurate and justified planning results, which will contribute to improving the efficiency of wagon flow management. In addition, the implementation of this approach can serve as the basis for further improving the methods of strategic planning of the transportation process and minimizing the impact of uncertainty factors. The proposed refinement of the TFP calculation model has not only a practical focus, but also represents a theoretical example of the application of an approach aimed at reducing the level of epistemic uncertainty in the management system of the operational work of rail transport. The systematic development and implementation of such approaches creates the basis for mitigating the negative impact of factors that represent sources of other types of uncertainty
References
Управління вантажними перевезеннями в умовах ризиків конкурентного середовища / Бех П. В., Нестеренко Г. І., Стрелко О. Г., Музикін М. І. Системи та технології. 2021. № 1 (61). С. 85-97. DOI: https://doi.org/10.32836/2521-6643-2021-1-61.7.
Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions / S. Zhan et al. Transportation Research Part E: Logistics and Transportation Review. 2024. Vol. 183. Pp. 1-24. DOI: https://doi.org/10.1016/j.tre.2024.103429.
Govindan K., Fattahi M., Keyvanshokooh E. Supply chain network design under uncertainty: a comprehensive review and future research directions. European Journal of Operational Research. 2017. Vol. 263(1). Pp. 108-141. DOI: https://doi.org/10.1016/j.ejor.2017.04.009.
Aghezzaf E. Capacity planning and warehouse location in supply chains with uncertain demands. Journal of the Operational Research Society. 2005. Vol. 56(4). Pp. 453-462. DOI: https://doi.org/10.1057/palgrave.jors.2601834.
Akbari A. A., Karimi B. A new robust optimization approach for integrated multiechelon, multi-product, multi-period supply chain network design under process uncertainty. The International Journal of Advanced Manufacturing Technology. 2015. Vol. 79(1). Pp. 229-244. DOI: https://doi.org/10.1007/s00170-015-6796-9.
Bidhandi H. M., Yusuff R. M. Integrated supply chain planning under uncertainty using an improved stochastic approach. Applied Mathematical Modelling. 2011. Vol. 35(6). Pp. 2618-2630. DOI: https://doi.org/10.1016/j.apm.2010.11.042.
Eco-driving in railway lines considering the uncertainty associated with climatological conditions / Blanco-Castillo M., Fernández A., Fernández A., Cucala A. P. Sustainability. 2022. Vol. 14(14). Pp. 1-26. DOI: https://doi.org/10.3390/su14148645.
Gao Y., Yang L., Li S. Uncertain Models on Railway Transportation Planning Problem. Applied Mathematical Modelling. 2015. Vol. 40. Iss. 7-8. Pp. 4921-4934. DOI: https://doi.org/10.1016/j.apm.2015.12.016.
Haehn R., Ábrahám E., Nießen N. Probabilistic Simulation of a Railway Timetable. 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems ATMOS 2020 : Pisa, Italy, September 7-8, 2020. Vol. 85. Pp. 1-14. DOI: https://doi.org/10.4230/OASIcs.ATMOS.2020.16.
Corman F., Kecman P. Stochastic prediction of train delays in real-time using Bayesian networks. Transportation Research Part C: Emerging Technologies. 2018. Vol. 95. Pp. 599-615. DOI: https://doi.org/10.1016/j.trc.2018.07.013.
Гайсинський О. Є. Математична модель дослідження динаміки руху вагонів на сортувальній станції. Наукові праці Державного університету залізничного транспорту імені академіка В. Лазаряна. 2015. Вип. 165. С. 73-78.
Li H., Jin M., He S. Sequencing and Scheduling in Railway Classification Yards. Transportation Research Record: Journal of the Transportation Research Board. 2015. № 2475. С. 72-80. DOI: https://doi.org/10.3141/2475-09.
Козаченко Д. М., Вернигора Р. В., Горбова О. В. Методи збору даних про функціонування залізничних станцій. Транспортні системи та технології перевезень : зб. наук. пр. Дніпро-петр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. Дніпропетровськ. 2014. Вип. 8. С. 58-64. DOI: https://doi.org/10.15802/tstt2014/38087.
Музикіна С. І., Музикін М. І., Нестеренко Г. І. Дослідження пропускної спроможності сортувальної станції. Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту імені академіка В. Лазаряна. 2016. Вип. 2. С. 47–60. DOI: https://doi.org/10.15802/stp2016/67289.
Музикіна Г. І., Болвановська Т. В., Жорова Є. М. Вплив параметрів накопичення вагонів на їх простій на сортувальній станції. Вісник Дніпропетровського національного університету залізничного транспорту ім. академіка В. Лазаряна. 2008. Вип. 20. С. 198-201.
Butko T., Prokhorov V., Chekhunov D. Devising a method for the automated calculation of train formation plan by employing genetic algorithms. Eastern-European journal of enterprise technologies. 2017. Vol. 85. No. 3. Pt. 1. Pp. 55-61. DOI: https://doi.org/10.15587/1729-4061.2017.93276.
Downloads
Published
How to Cite
Issue
Section
License
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







