Mathematical model for assessing the functional state of human eye parameters

Authors

DOI:

https://doi.org/10.31498/2225-6733.49.1.2024.321178

Keywords:

human eye, mathematical model, integral indicator, nonlinearity, optimization, adaptation, monitoring, prediction

Abstract

Mathematical models of the human eye's condition should serve as adaptive tools for analyzing and predicting ophthalmological parameters, considering their interactions and individual patient characteristics. Such models are in high demand in ophthalmology because they improve the diagnosis, monitoring, and treatment of diseases, thereby enhancing patients' quality of life. The key aspects of the developed mathematical model of the human eye's condition include its structure and functionality, based on a mathematical function that integrates the eye's physiological parameters, with each parameter assigned a weight coefficient that determines its contribution to the integral indicator of the eye's condition. The model accounts for complex nonlinear interactions between parameters, reflecting the intricacies of physiological processes. To optimize weight coefficients, the L-BFGS-B method is employed, an iterative optimization technique that effectively minimizes the loss function, ensuring high accuracy and adaptation of the model to individual patient data. The advantages and applications of this model include accurate diagnosis by enabling the early detection of diseases such as glaucoma, cataracts, and macular degeneration; personalized treatment through a tailored approach that considers the unique parameter values of each patient; monitoring and prediction capabilities for analyzing disease progression and facilitating treatment adjustments in early stages; and integration with technologies, offering potential applications in virtual and augmented reality systems and artificial intelligence frameworks for automating diagnostics. The developed model serves as a universal tool for analyzing the eye's condition and creating new diagnostic and treatment technologies. It considers the interrelations between parameters and their influence on the physiological state of the eye, providing professionals with a powerful instrument for advancing ophthalmological practice

Author Biographies

V. Vychuzhanin, Odesa Polytechnic National University, Odessa

Dsc (Engineering), professor

A. Vychuzhanin, Odesa Polytechnic National University, Odessa

Ph.D. in computer science, Assistant Professor

O. Guzun, SI «The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine», Odessa

Candidate of Medical Sciences

O. Zadorozhnyy , SI «The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine», Odessa

Doctor of Medical Sciences

References

Artificial intelligence Integration in the diagnosis, prognosis and diabetic neovascular glaucoma treatment / V. Vychuzhanin et al. ICST-2024 : Proceedings of XII International Scientific and Practical Conference «Information Control Systems and Technologies», Odesa, 23-25 September 2024. Vol. 3790. Рр. 238-249.

Розвитки інформаційно-керуючих систем та технологій : монографія / Н. Аксак та ін.; під наук. ред. проф. В.Вичужаніна. Львів-Торунь : Liha-Pres, 2024. 380 с. DOI: https://doi.org/10.36059/978-966-397-422-4.

A neural network model for predicting the effectiveness of treatment in patients with neovascular glaucoma associated with diabetes mellitus / О. Guzun et al. Romanian journal of Ophthalmology. 2024. vol.68. Рp. 294-300. DOI: https://doi.org/10.22336/rjo.2024.53.

Application of machine learning in ophthalmic imaging modalities / Tong Y., Lu W., Yu Y., Shen Y. Eye and Vision. 2020. Vol. 7. Рр. 1-15. DOI: https://doi.org/10.1186/s40662-020-00183-6.

Digital Twin Models for Personalised and Predictive Medicine in Ophthalmology / E. Moisescu et al. Technologies. 2024. Vol. 12(4). Pp. 1-25. DOI: https://doi.org/10.3390/technologies12040055.

Prognostic potentials of AI in ophthalmology: systemic disease forecasting via retinal imaging / Y. Tan et al. Eye and Vision. 2024. Vol. 11. Pp. 1-18. DOI: https://doi.org/10.1186/s40662-024-00384-3.

Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions / H. Goh et al. Sensors. 2022. Vol. 22(18). Article 6780. DOI: https://doi.org/10.3390/s22186780.

Eye movement characteristics in a mental rotation task presented in virtual reality / Z. Tang et al. Frontiers in Neuroscience. 2023. Vol. 17. Pp. 01-11. DOI: https://doi.org/10.3389/fnins.2023.1143006.

Visual Sensation and Perception Computational Models for Deep Learning: State of the art, Challenges and Prospects / Wei B., Zhao Y., Hao K., Gao L. 2021. Pp. 1-14. [Електронний ресурс] DOI: https://doi.org/10.48550/arXiv.2109.03391.

Erdinest N., London N., Lavy I. Vision through Healthy Aging Eyes. Vision. 2021. Vol. 5(4). Pp. 1-12. DOI: https://doi.org/10.3390/vision5040046.

A Framework for Assessing the Impact of Visual Impairment on Older Adults / B. K. Swenor et al. The Gerontologist. 2020. Vol. 60. Iss. 6. Рр. 989-995. DOI: https://doi.org/10.1093/geront/gnz117.

Computational modeling of fluid flow and intra-ocular pressure following glaucoma surgery / Gardiner B. S., Smith D. W., Coote M., Crowston J. G. PLoS. 2020. Vol. 60. Pр. 989-995. DOI: https://doi.org/10.1371/journal.pone.0013178.

Semenyuk V. Thermal interaction of multi-pulse laser beam with eye tissue during retinal photocoagulation: Analytical approach. International Journal of Heat and Mass Transfer. 2017. Vol. 112. Рр. 480-488. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.013.

Zadorozhnyy O., Savin N., Buiko A. Improving the technique for controlled cryogenic destruction of conjunctival tumors located in the projection of the ciliary body onto the sclera: A preliminary report. Journal of Ophthalmology. 2018. Vol. 5. Рр. 60-65. DOI: https://doi.org/10.31288/oftalmolzh201856065.

Barton K., Jonas J., Chodosh J. Highlights from this issue. British Journal of Ophthalmology. 2020. Vol. 104. № 9. Рр. 104-110. DOI: https://doi.org/10.1136/bjophthalmol-2020-317668.

Influence of application site of provisional cement on the marginal adaptation of provisional crowns / Cardoso M., Torres M. F., de Moraes Rego M. R., Santiago L. C. Journal of Applied Oral Science. 2008. Vol. 16(3). Рр. 214-218. DOI: https://doi.org/10.1590/S1678-77572008000300010.

Howie S., Tinker A. Are we on the same page? Exploring the role of the geriatrician in the care of the older surgical patient from the perspective of surgeons and geriatricians. Clinical Medi-cine. 2018. Vol. 18. № 5. Рр. 374-379. DOI: https://doi.org/10.7861/clinmedicine.18-5-374.

Adeolu O. Essential Guide to Python for All Levels Collection: Forging Ahead in Tech and Programming. 2024. 314 р.

Nocedal J., Wright S. Numerical Optimization. Springer Series in Operations Research and Financial Engineering. 2006. 664 p. DOI: https://doi.org/10.1007/978-0-387-40065-5.

Downloads

Published

2024-12-26

How to Cite

Vychuzhanin, V. ., Vychuzhanin, A. ., Guzun, O. ., & Zadorozhnyy , O. . (2024). Mathematical model for assessing the functional state of human eye parameters. Reporter of the Priazovskyi State Technical University. Section: Technical Sciences, 1(49), 6–16. https://doi.org/10.31498/2225-6733.49.1.2024.321178