Laboratory studies of the dynamic state of a rigid sieving surface operating in a vibrational-impact field
DOI:
https://doi.org/10.31498/2225-6733.49.1.2024.321237Keywords:
vibrations, vibrational-impact field, sieving surface, freely laid surface, galloping, modeAbstract
The article investigates the dynamic behavior of a rigid sieving surface operating within a vibrational-impact field. Granulometric composition is a critical parameter in energy-efficient processes, such as sintering and smelting in metallurgy. Given the increasing costs of energy resources, enhancing the screening process of bulk materials has become a priority. This necessitates the development of advanced machines capable of ensuring effective material preparation for subsequent metallurgical processes. The research highlights limitations of current technologies, including metal sieves with circular or square openings, which offer a low effective screening area (35-40%) and achieve an efficiency of only 55%. Polymer sieves, although advantageous for reducing clogging, fail under high temperatures and suffer from reduced repairability and operational lifespan. The primary objective of the research is to determine the dynamic characteristics of a rigid sieving surface when subjected to vibrational and impact loading. A laboratory-scale vibrational-impact setup was developed, emulating the operational conditions of standard industrial screens. The system consisted of key components, including a manually controlled hopper, vibrating carriage, adjustable sieving frame, and accelerometers for precise measurement. Experiments were conducted across a range of vibration accelerations (18…47 m/s²) at fixed amplitudes, with frequency adjustments ensuring controlled testing conditions. Data from the sieving surface were recorded using high-precision sensors, followed by advanced statistical analysis. Results revealed that the acceleration distribution of the sieving surface deviates from a normal distribution, exhibiting asymmetry. Consequently, the interquartile range was used for outlier detection instead of the standard deviation. Oscillographic analysis of acceleration dynamics highlighted two distinct zones: transient motion and steady-state motion. The study established an empirical power-law relationship between the reduction in transient motion time and increased vibration acceleration. Furthermore, findings demonstrated that higher vibration accelerations increase the average acceleration, velocity, and displacement amplitude of the sieving surface. However, beyond a threshold of 33 m/s², these parameters exhibited a decelerating growth rate, indicating diminishing returns. Additionally, dynamic analysis of motion in the sieving surface revealed that points in the loading and unloading zones move in antiphase, confirming a rotational-oscillatory motion pattern. This motion transforms into a reciprocating linear trajectory as the energy input increases. The empirical results validate earlier theoretical models, with experimental errors averaging 8.5%, proving the reliability of the proposed dynamic model. The research outcomes offer valuable insights into optimizing the design and operation of rigid sieving surfaces for vibrational-impact screening systems. The derived dependencies and dynamic behavior trends can guide the engineering of more efficient screening equipment, improving the energy efficiency of material preparation processes in metallurgical industries
References
Товаровский И. Г. Нормативная оценка влияния параметров доменной плавки на расход кокса и производительность. Фундаментальные и прикладные проблемы черной металлургии. 2014. № 28. С. 117-131.
Теория и практика подготовки металлургического кокса к доменной плавке: монография / В.Г. Гусак та ін. Киев : Наукова думка, 2011. 216 с.
Учитель С. А., Лялюк В. П., Пополов Д. В. Сортировка металлургических шихт на вибрационных грохотах. Саарбрюккен: Palmarium Academic Publishing, 2014. 413 с.
Бергеман Г. В., Пелых И. В., Петренко В. А. Проблемы калибровки металлургического минерального сырья – известняка. Металл и литье Украины. 2008. № 5. С. 5-8.
Берник П. С., Омельянов О. Н., Паламарчук И. П. Разработка виброгрохота с пространственными колебаниями рабочих органов. Вибрации в технике и в технологиях. 1998. № 2(6). С. 8-13.
Складоновский Е. Н., Баланов В. Г., Нехаев Г. Е. Коксовый грохот с резиновыми ситами. Металлургическая и горнорудная промышленность. 1990. № 4. С. 68-69.
Dynamic Characteristics of a Vibrating Flip-Flow Screen and Analysis for Screening 3 mm Iron Ore / C. Yu et al. Shock and Vibration. 2020. Vol. 2020. P. 1-12. DOI: https://doi.org/10.1155/2020/1031659.
Slepyan L. I., Slepyan V. I. Coupled mode parametric resonance in a vibrating screen model. Mechanical Systems and Signal Processing. 2014. Vol. 43, no. 1-2. P. 295–304. DOI: https://doi.org/10.1016/j.ymssp.2013.10.001.
Засельский В. И., Зайцев Г. Л., Китач Е. И. Промышленные исследования работы резонирующих просеивающих поверхностей. Теория и практика металлургии. 2009. № 5-6. С. 15-18.
Повышение эффективности классификации кокса за счет использования активных рабочих поверхностей виброгрохотов / Потураев В. Н., Надутый В. П., Гольдин А. А., Бараненко В. Д. Металлургическая и горнорудная промышленность. 1991. № 2. С. 48-49.
Longo S.G. Principles and Applications of Dimensional Analysis and Similarity. Parma: Springer Cham, 2021. 428 р. DOI: https://doi.org/10.1007/978-3-030-79217-6.
Upton G., Cook I. Understanding statistics. Oxford University Press, 2003. 657 p.
Moore D. S. Introduction to the practice of statistics. 6th ed. New York : W. H. Freeman and Company, 2009. 166 p.
Maxfield B. Engineering with mathcad. Great Britain: Elsevier, 2006. 494 p.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







