Spatial navigation device for people with disabilities

Authors

DOI:

https://doi.org/10.31498/2225-6733.49.2.2024.321352

Keywords:

visual impairment, assistive devices, spatial navigation, Arduino UNO, rangefinder, APDS-9960, Tinkercad, Arduino IDE, C

Abstract

The article discusses the creation of a prototype of a spatial navigation device for people with disabilities, namely severe visual impairment or blindness. Hardware implementation of the prototype was carried out using TinkerCAD automated design and 3D modelling. The software is created in the Arduino IDE development environment. The publications considered in the work showed that people with visual impairments can get autonomous access to important information thanks to the integration of modern technologies, which contributes to increasing their confidence, mobility and social activity. Providing easy access to texts, educational materials and digital information about the environment helps build a sense of independence and empowerment. Advances in assistive technology provide visually impaired people with up-to-date information about their surroundings, which helps improve navigation and increase safety. Some of the existing systems take into account social aspects, in particular the problems associated with the recognition of familiar faces without the use of auditory or tactile signals. This comprehensive approach not only improves navigational capabilities, but also contributes to enriching the social well-being and safety of visually impaired communities. Therefore, the development of a system capable of helping people with visual impairments in spatial navigation is an urgent topic and an important step in creating social equality. The main components of the developed device are the Arduino UNO hardware platform, HC-SR04 ultrasonic rangefinders, APDS-9960 digital sensor and active piezo elements. The control program created in the Arduino IDE ensures high efficiency of the interaction of sensors with the microcontroller. This prototype is capable of working in two modes: mainly – when safe distances to obstacles are determined and the mode of determining colors based on the RGB component. The device takes into account anatomical features, such as height - for this, a calibration button is placed on the body. Thanks to piezo elements, interaction with the user is carried out in the form of a sound signal with a certain height, frequency and duration

Author Biographies

D.V. Zaitsev, State Higher Education Institution «Priazovskyi state technical university», Dnipro

Master's student

O.Yu. Azarkhov, State Higher Education Institution «Priazovskyi state technical university», Dnipro

Dsc (Medical Sciences), professor

I.I. Sili, State Higher Education Institution «Priazovskyi state technical university», Dnipro

PhD (Engineering), associate professor

B.V. Efremenko, State Higher Education Institution «Priazovskyi state technical university», Dnipro

PhD (Engineering), associate professor

References

Vision impairment and blindness. World Health Organization (WHO). URL: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (дата звернення: 10.08.2024).

Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis / R. R. A. Bourne et al. The Lancet Global Health. 2017. Vol. 5. Iss. 9. Pp. e888-e897. DOI: https://doi.org/10.1016/s2214-109x(17)30293-0.

Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study / R. Bourne et al. The Lancet Global Health. 2020. Vol. 9. Iss. 2. Pp. e130-e143. DOI: https://doi.org/10.1016/s2214-109x(20)30425-3.

Understanding Challenges and Opportunities in Body Movement Education of People who are Blind or have Low Vision / M. De Silva et al. ASSETS '23 : Proceedings of the 25th International ACM SIGACCESS Conference on Computers and Accessibility, New York, USA, 22-25 October 2023. Pp. 1-19. DOI: https://doi.org/10.1145/3597638.3608409.

Visual challenges in the everyday lives of blind people / E. Brady et al. CHI'13: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April - 2 May 2013. Pp. 2117-2126. DOI: https://doi.org/10.1145/2470654.2481291.

Кількість людей з порушенням зору в Україні зростає: як ініціативи UNDP сприяють якісній реабілітації. UNDP. URL: https://www.undp.org/uk/ukraine/news/kilkist-lyudey-z-porushennyam-zoru-v-ukrayini-zrostaye-yak-initsiatyvy-undp-spryyayut-yakisniy-reabilitatsiyi?utm_source=chatgpt.com (дата звернення: 25.06.2024).

Mixture reality-based assistive system for visually impaired people / J. Song et al. Displays. 2023. Vol. 78. Article 102449. DOI: https://doi.org/10.1016/j.displa.2023.102449.

Towards assisting visually impaired individuals: A review on current status and future prospects / M. Mashiata et al. Biosensors and Bioelectronics: X. 2022. Vol. 12. Article 100265. DOI: https://doi.org/10.1016/j.biosx.2022.100265.

Detect and Approach: Close-Range Navigation Support for People with Blindness and Low Vision / Y. Hao et al. Computer Vision – ECCV 2022 Workshops. Lecture Notes in Computer Science. 2023. Vol. 13806. Pp. 607-622. DOI: https://doi.org/10.1007/978-3-031-25075-0_41.

Roy M., Shah P. Internet of Things (IoT) Enabled Smart Navigation Aid for Visually Impaired. Advanced Information Networking and Applications. 2022. Pp. 232-244. DOI: https://doi.org/10.1007/978-3-030-99619-2_23.

Commute Booster: A Mobile Application for First/Last Mile and Middle Mile Navigation Support for People with Blindness and Low Vision / J. Feng et al. IEEE Journal of Translational Engineering in Health and Medicine. 2023. Vol. 11. Pp. 523-535. DOI: https://doi.org/10.1109/jtehm.2023.3293450.

Floor Plan Based Active Global Localization and Navigation Aid for Persons with Blindness and Low Vision / R. G. Goswami et al. IEEE Robotics and Automation Letters. 2024. Vol. 9, Iss. 12. Pp. 11058-11065. DOI: https://doi.org/10.1109/lra.2024.3486208.

UNav: An Infrastructure-Independent Vision-Based Navigation System for People with Blindness and Low Vision / A. Yang et al. Sensors. 2022. Vol. 22. Iss. 22. Article 8894. DOI: https://doi.org/10.3390/s22228894.

Use of ToF sensors to develop Assistive Technology for visually impaired people / A. A. Ferreira et al. ENSUS 2024 - XII Encontro de Sustentabilidade em Projeto. 2024. Pp. 1004-1011. DOI: https://doi.org/10.29183/2596-237x.ensus2024.v12.n1.p1004-1011.

IoT-Driven Accessibility: A Refreshable OCR-Braille Solution for Visually Impaired and Deaf-Blind Users through WSN / K. K. Reddy et al. Journal of Economy and Technology. 2024. Vol. 2. Pp. 128-137. DOI: https://doi.org/10.1016/j.ject.2024.04.007.

Real-Time Object Detection and Face Recognition Application for the Visually Impaired / K. Sanjar et al. Computers, Materials & Continua. 2024. Vol. 79(3). Pp. 1-10. DOI: https://doi.org/10.32604/cmc.2024.048312.

Sivan Sh., Darsan G. Computer Vision based Assistive Technology for Blind and Visually Impaired People. ICCCNT'16: Proceedings of the 7th International Conference on Computing Communication and Networking Technologies, Dallas TX, USA, 6-8 July 2016. Pp. 1-8. DOI: https://doi.org/10.1145/2967878.2967923.

Mohammed Fayiz Ferosh. Assistive Technology for Navigation of Visually Impaired People. Journal of Electrical Systems. 2024. Vol. 20. Iss. 7s. Pp. 989-996. DOI: https://doi.org/10.52783/jes.3479.

Kiruthika Devi S., Subalalitha C. Deep Learning Based Audio Assistive System for Visually Impaired People. Computers, Materials & Continua. 2021. Vol. 71. Iss. 1. Pp. 1205-1219. DOI: https://doi.org/10.32604/cmc.2022.020827.

Сілі І. І., Азархов О. Ю., Єфременко Б. В. Тензосенсорна рукавиця для людей з порушенням мовлення. Наука та виробництво. 2023. Вип. 25. Pp. 159-167. DOI: https://doi.org/10.31498/2522-9990252023286737.

Євсеєнко О. Синтез системи виміру параметрів повітря у приміщеннях торговельного центру. Вісник Національного технічного університету «ХПІ». Серія: Системний аналiз, управління та iнформацiйнi технологiї. 2022. Вип. 1(7). C. 28-34. DOI: https://doi.org/10.20998/2079-0023.2022.01.05.

Tinkercad: From mind to design in minutes. Tinkercad. URL: https://www.tinkercad.com/ (дата звернення: 10.08.2024).

Autodesk Fusion: More than CAD, it's the future of design and manufacturing. URL: https://www.autodesk.com/products/fusion-360/overview (дата звернення: 12.08.2024).

Published

2024-12-26

How to Cite

Zaitsev, D. ., Azarkhov, O. ., Sili, I. ., & Efremenko, B. . (2024). Spatial navigation device for people with disabilities. Reporter of the Priazovskyi State Technical University. Section: Technical Sciences, 2(49), 41–50. https://doi.org/10.31498/2225-6733.49.2.2024.321352