Dynamic model of a propulsion diesel-electric plant with unipolar machines
DOI:
https://doi.org/10.31498/2225-6733.49.2.2024.321378Keywords:
asynchronous marine engines, electric cable, energy efficiency, marine transport, semiconductor devices, power electronics, marine engines, marine power plants, diagnostics, effective power, power transmission, marine diesel, power plant, shipAbstract
The article presents an improved dynamic model of a diesel-electric propulsion unit with unipolar machines, which, unlike the known ones, takes into account the presence of three control loops that form the magnetic fluxes of the generator, the propulsion electric motor, the speed of the diesel engine and one control (output) variable: the speed of the propeller, which allows for the synthesis of control loop regulators with given dynamic characteristics. When constructing ship electrical power systems, single ship electrical power systems are widely used, which combine a significant set of electrical devices that can be functionally divided into devices that provide electricity for the ship's own needs and systems that provide movement and are called propulsion electrical units. The purpose of the article is the need to improve the dynamic model of a diesel-electric propulsion unit with unipolar machines, which will allow for the synthesis of control loop regulators with given dynamic characteristics. The research used GRC as the engine. This article considers the elements of a diesel-electric propulsion plant from the perspective of dynamic systems theory, on the basis of which a mathematical model of a diesel-electric propulsion plant is developed. A dynamic model has been constructed that has three control loops that form the magnetic fluxes of the generator, the propulsion electric motor, the diesel engine rotation speed and one control (output) variable: the propeller rotation speed. This system will subsequently allow for the synthesis of control loop regulators that meet the specified optimization criteria
References
Енергоефективність суднових енергетичних установок в Україні: стан та перспективи розвитку / О. Россомаха та ін. Science and Practice: Implementation to Modern Society : Proceedings of the 14th International Scientific and Practical Conference, Manchester, Great Britain, 26-28 April 2023. C. 517-520.
Включение синхронных генераторов в многоагрегатную судовую электростанцию / Вишневский Л. В., Веретенник А. М., Войтецкий И. Е., Козырев И. П. Електромашинобудування та електрообладнання. 2007. № 68. С. 26-29.
Electric power generation with magnetically geared machine: pat. 8044527 USA: F03D9/00, H02P9/14. № 11/861,759; filed 26.09.2007; publ. 25.10.2011. 16 p.
Power Factor Correction. Power Factor Controller BR7000-I series. URL: http://www.processtechnique.com.
Acomi N., Acomi O. C. The influence of different types of marine fuel over the energy efficiency operational index. Union General Assembly. Energy Procedia. 2014. № 59. Pp. 243-248. DOI: https://doi.org/10.1016/j.egypro.2014.10.373.
Бурбело М.Й. Компенсація реактивної потужності асинхронних двигунів в різкозмінних режимах навантаження. Вісник Вінницького політехнічного інституту. 2008. № 1. С. 65-68.
Спосіб управління автономною електроенергетичною системою та пристрій для його здійснення: пат. 116656 Україна: МПК (2006.01), G05F 1/70, H02J 3/18, H02J 3/38, H02P 9/46. № a201511808; заявл. 30.11.2015; опубл. 25.04.2018, Бюл. № 8. 7 с.
Serra Р., Fancello G. Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping. Sustainability. 2020. № 12(8). Article 3220. DOI: https://doi.org/10.3390/su12083220.
Вишневский Л. В., Муха Н. И., Павленко С. С. Пуск асинхронных электродвигателей с компенсацией реактивной мощности: Монография. Одесса : НУ «ОМА», 2016. 161 c.
Дранкова А. О., Муха Н. И. Использование нейронных сетей прямого распространения для прогнозирования технического состояния судовых дизель-генераторов. Вісник Національного технічного університету «ХПІ». Серія: Проблеми автоматизованого електроприводу. Теорія і практика. 2013. № 36. С. 505-506.
Determining energy-efficient operation modes the propulsion electrical motor of an autonomous swimming apparatus / Volyanskaya Y., Volyanskiy S., Volkov A., Onishchenko O. Eastern-European Journal of Enterprise Technologies. 2017. Vol. 6/8 (90). Рp. 11-16. DOI: https://doi.org/10.15587/1729-4061.2017.118984.
Analysis of the operational ship energy efficiency considering navigation environmental impacts / Yuan Y., Li Z., Malekian R., Yan X. Journal of Marine Engineering & Technology. 2017. Vol. 16. № 3. Рp. 150-159. DOI: https://doi.org/10.1080/20464177.2017.1307716.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







