The state of development of information technology decision-making support in management human resources
DOI:
https://doi.org/10.31498/2225-6733.50.2025.336253Keywords:
human resource management, GPT, Deep Learning, NLP, decision support, big data analysis, virtual assistantAbstract
The research is related to the development of information technologies designed to improve the efficiency and effectiveness of decision-making processes in the field of human resource management. Effective human resource management is a critical aspect of modern organisations, as it plays a key role in determining their competitiveness and long-term success. The emergence of big data has challenged HR professionals to effectively navigate through huge amounts of information. This information includes data sourcing, selection, communication and interaction with candidates and employees. The integration of information technology into human resource management processes has the potential to automate routine business tasks and simplify decision-making processes, especially when these decisions are based on conclusions drawn from the analysis of a complex set of data from various sources. The article presents a comprehensive overview of methods of applying modern artificial intelligence algorithms to analyse structured and unstructured data that are typical for human resource management. The article explores the potential of generative models of artificial intelligence (GPT and BERT), deep learning and natural language processing for decision support. The article considers the possibility of integrating personal qualities of candidates into the assessment of their suitability for vacant positions by applying deep learning methods. The authors propose to use a combination of ap-approaches in the development of information technologies to achieve greater automation of the processes of candidate selection, resume analysis, communication with candidates and personalisation of interaction
References
Юрченко Г.М., Захарченко Р.В., Лєсьо А.П. Цифрові трансформації в управлінні людським капіталом. Інвестиції: практика та досвід. 2024. № 12. С. 172-177. DOI: https://doi.org/10.32702/2306-6814.2024.12.172.
Artificial intelligence and a new era of human resources. URL: https://www.ibm.com/think/topics/ai-in-hr (дата звернення: 10.10.24).
Зайченко О.І., Кузнецова В.І. Управління людськими ресурсами: навчальний посібник; за наук. ред. О.І. Зайченко. Івано-Франківськ: «Лілея-НВ», 2015. 232 с.
Priya Dr. Role of Artificial Intelligence in Human Resources Management. 15th International Conference on Business and Information, Wattala, Sri Lanka, 1-2 November 2024. Vol. 15. Pp. 158-164.
Лозко С. Як українські HR-фахівці використовують у своїй роботі технології штучного інтелекту? URL: https://budni.robota.ua/hr/yak-ukrayinski-hr-fahivtsi-vikoristovuyut-u-svoyiy-roboti-tehnologiyi-shtuchnogo-intelektu-doslidzhennya-robota-ua (дата звернення: 24.12.2024).
Hewage A. Exploring the Applicability of Artificial Intelligence in Recruitment and Selection Processes: A Focus on the Recruitment Phase. Journal of Human Resource and Sustainability Studies. 2023. Vol. 11. Pp. 603-634. DOI: https://doi.org/10.4236/jhrss.2023.113034.
Орєхов Д. Застосування штучного інтелекту в управлінні сучасним підприємством. Економіка і суспільство. 2024. Вип. 64. С. 1-9. DOI: https://doi.org/10.32782/2524-0072/2024-64-143.
Піддубна Л.І., Чуєва І.С. Міжнародний досвід використання цифрових технологій в управлінні персоналом ІТ-компаній. Економіка і суспільство. 2023. Вип. 55. С. 1-7. DOI: https://doi.org/10.32782/2524-0072/2023-55-98.
Федчун Н.О., Аркуша Л.І. Основи профайлінгу: навчально-методичний посібник. Одеса : Юридична література, 2023. 56 с. DOI: https://doi.org/10.32837/11300.26852.
AI in Recruiting 2024: Pros and Cons. URL: https://www.kornferry.com/insights/featured-topics/talent-recruitment/ai-in-recruiting-navigating-trends-for-2024 (дата звернення: 11.10.24)
Exploring the application of generative AI in human resource management / P. Kumah, I.K. Nketia, W. Yaokumah, K.O. Asante-Offei. Generative AI for Transformational Management. 2024. Pp. 51-82. DOI: https://doi.org/10.4018/979-8-3693-5578-7.ch003.
Gundapu S., Mamidi R. Transformer based Automatic COVID-19 Fake News Detection System. 2021. arXiv:2101.00180v3. DOI: https://doi.org/10.48550/arXiv.2101.00180.
Azure OpenAI Service documentation. URL: https://learn.microsoft.com/en-us/azure/ai-services/openai/ (дата звернення: 12.10.24)
10 Things You Need to Know About BERT and the Transformer Architecture That Are Reshaping the AI Landscape. URL: https://neptune.ai/blog/bert-and-the-transformer-architecture (дата звернення: 12.10.24)
Raman R., Venugopalan M., Kamal A. Evaluating human resources management literacy: A performance analysis of ChatGPT and Bard. Heliyon. 2024. Vol. 10, no. e27026. DOI: https://doi.org/10.1016/j.heliyon.2024.e27026.
How to use ChatGPT in Recruitment [12 sample use cases]. URL: https://www.occupop.com/blog/how-to-use-chatgpt-in-recruitment-10-sample-use-cases (дата звернення: 12.10.24)
Idrees H. GPT vs. BERT: Unveiling the Titans of Natural Language Processing. URL: https://medium.com/@hassaanidrees7/gpt-vs-bert-unveiling-the-titans-of-natural-language-processing-6536c787d32d (дата звернення: 13.10.24)
Horodyski P. Recruiter's perception of artificial intelligence (AI)-based tools in recruitment. Computers in Human Behavior Reports. 2023. Vol. 10. Article 100298. DOI: https://doi.org/10.1016/j.chbr.2023.100298.
Руль Ю.В., Мартинова Т.О. Психологія профайлінгу : навч. посіб. К. : ДП Вид. дім «Персонал», 2018. 236 с.
NLP Tools for Recruitment: Understanding Candidate Language. URL: https://www.herohunt.ai/blog/nlp-tools-for-recruitment (дата звернення: 15.10.24)
Black J., van Esch P. AI-enabled recruiting: What is it and how should a manager use it? Business Horizons. 2020. Vol. 63, iss. 2. Pp. 215-226. DOI: https://doi.org/10.1016/j.bushor.2019.12.001.
Sadriu S. Technological Trends on Cognitive Virtual Assistants. Proceedings of the 9-th International Conference on Computer Science and Communication Engineering, Prishtinë, Kosovo, 2020.
Why Use Python for AI and Machine Learning. Waverley Software. URL: https://waverleysoftware.com/blog/python-for-ai-and-ml/ (дата звернення: 16.10.24)
Azure Functions documentation. URL: https://learn.microsoft.com/en-us/azure/azure-functions/ (дата звернення: 16.10.24)
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







