Methods of correction of current values of technological parameters in automated control systems

Authors

DOI:

https://doi.org/10.31498/2225-6733.51.2025.344904

Keywords:

APCS, control object, identification, microcontroller, technological information input subsystem

Abstract

The issue of organizing the collection and processing of technological information in an automated process control system (APCS) within the framework of its information subsystem operation is considered. The main tasks that arise during the development of software for the information subsystem are highlighted: determining the sensor polling time, selecting signal averaging methods, and selecting filtering algorithms. Based on the review of scientific articles, the current state of these issues has been assessed. The purpose of the study has been defined, the methods for solving the tasks have been described, and a physical prototype of a nominal technological object has been created. A system for collecting and processing analog signals has been implemented, and experiments have been conducted to measure technological parameters (temperature, air velocity) under various values of control actions. Algorithms for filtering and correcting analog signals have been selected. Methods for correcting temperature errors, accounting for the dynamics and magnitudes of control actions, have been established. A combination of filtering, correction, and mathematical modeling methods has been applied to create and test a digital twin of a technological unit with thermal and aerodynamic processes. The expediency of using a Kalman filter for rapidly changing parameters and a combination of a median filter and an aperiodic filter for slowly varying parameters has been demonstrated. The expediency of applying dynamic corrections that account for the rate of change of slowly varying parameters has also been demonstrated. An adaptive mathematical model with variable parameters, based on the range of control actions, has been developed in the form of a set of elementary links. The object parameters have been identified using the obtained experimental data; several variants of automatic control systems have been developed and tested; and the results of control system simulation have been analyzed

Author Biographies

O.I. Simkin, «TECHNICAL UNIVERSITY «METINVEST POLYTECHNIC» LLC, Zaporizhzhia

PhD (Engineering), professor

S.P. Sokol, Separate structural unit «Mariupol Vocational College of the SHEI «PSTU», Dnipro

Lecturer

A.B. Isaiev, «TECHNICAL UNIVERSITY «METINVEST POLYTECHNIC» LLC, Zaporizhzhia

Senior lecturer

O.O. Koyfman , «TECHNICAL UNIVERSITY «METINVEST POLYTECHNIC» LLC, Zaporizhzhia

PhD (Engineering), associate professor

References

Дорошенко В. С. Топологічна оптимізація конструкцій виливків при адитивному виробництві з застосуванням цифрового двійника. Процеси лиття. 2020. № 4 (142). С. 53-62. DOI: https://doi.org/10.15407/plit2020.04.053.

Гриценко В., Скурихін В., Цепков Г. Інформаційні технології цифрової обробки сигналів: нові підходи і перспективи впровадження. Вісник Національної академії наук України. 2005. № 12. С. 33-41.

Негоденко О. В. Моделі для обробки інформаційних сигналів на основі тригонометричних сплайнів. Зв'язок. 2018. № 4. С. 47-50.

Алдохін М. Д. Логічний аналізатор сигналів на ПЛІС. Електронна та акустична інженерія. 2020. Т. 3. № 4. С. 38-43. DOI: https://doi.org/10.20535/2617-0965.2020.3.4.199926.

Рязанцев О. І., Кардашук В. С., Рязанцев А. О. Дослідження впливу параметра фільтра на якість аналого-цифрового перетворення сигналу. Вісник Східноукраїнського національного університету імені Володимира Даля. 2020. № 7 (263). С. 29-34. DOI: https://doi.org/10.33216/1998-7927-2020-263-7-29-34.

Digital Estimation and Compensation of Analog Errors in Frequency-Interleaved ADCs / J. Song et al. Journal of Circuits, Systems and Computers. 2019. Vol. 28. Pp. 35-42. DOI: https://doi.org/10.1142/S0218126619501342.

Characterising the Digital Twin: A systematic literature review / D. Jones et al. CIRP Journal of Manufacturing Science and Technology. 2020. Vol. 29, part A. Pp. 36-52. DOI: https://doi.org/10.1016/j.cirpj.2020.02.002.

Digital Twin in Industry: State-of-the-Art / Tao F., Zhang H., Liu A., Nee A. Y. C. IEEE Transactions on Industrial Informatics. 2019. Vol. 15, iss. 4. Pp. 2405-2415. DOI: https://doi.org/10.1109/TII.2018.2873186.

Digital-Twin-Based Coordinated Optimal Control for Steel Continuous Casting Process / Yang J., Ji Z., Liu W., Xie Z. Metals. 2023. Vol. 13(4). Article 816. Pp. 123-143. DOI: https://doi.org/10.3390/met13040816.

Kanokogi H. AI in the Process Industry. Yokogawa Technical Report (Engl. Ed.). 2021. Vol. 64, no. 1. Pp. 53-60.

Smith J. L. Advances in neural networks and potential for their application to steel metallurgy. Materials Science and Technology. 2020. Vol. 36, iss. 17. DOI: https://doi.org/10.1080/02670836.2020.1839206.

Шилов Д., Ямненко Ю. Система дистанційного моніторингу ваги для бджільництва. Мікросистеми, електроніка та акустика. 2022. Т. 27, № 3. С. 267186–1 – 267186–7. DOI: https://doi.org/10.20535/2523-4455.mea.267186.

Койфман О., Мірошниченко В., Сімкін О. Аналітичне дослідження методів ідентифікації об’єкта керування. MiningMetalTech 2023 – The Mining and Metals Sector: Integration of Business, Technology and Education: Scientific monograph. Riga, Latvia: Baltija Publishing, 2023. С. 113-147. DOI: https://doi.org/10.30525/978-9934-26-382-8-7.

Published

2025-10-30

How to Cite

Simkin, O. ., Sokol, S. ., Isaiev, A. ., & Koyfman , O. . (2025). Methods of correction of current values of technological parameters in automated control systems. Reporter of the Priazovskyi State Technical University. Section: Technical Sciences, (51), 174–187. https://doi.org/10.31498/2225-6733.51.2025.344904