Methods to prevent turbogenerators design elements defects
DOI:
https://doi.org/10.31498/2225-6733.32.2016.83933Keywords:
turbogenerator, defect, statistical data, failures of electrical equipment, cooling systemAbstract
The paper shows that the determination of a failure probability due to the design, technological and operational drawbacks, as well as due to the turbogenerators working time exceeding from statistics data is inaccurate. Machine park of turbogenerators being rather limited in number, the classification and the distribution of generators into groups is random. It can not be used in practice to identify the pre-emergency state of turbogenerators and their timely stop. Analysis and classification of most frequent defects of turbogenerators has been performed. Methods for assessing such defects and reduction of their development have been offered. The article notes that expenses should be taken into account when setting up a monitoring system to assess the state and to identify defects. Reduction of expenditures on both operating and new turbogenerators must be justified. Rapid return of investments must be ensured. The list of additional tests has been proposed: measurement of infrared radiation outside the body of the turbogenerator for the estimation of the thermal field distribution and the defects of gas coolers identification; vibroacoustic inspection of the stator core and casing to find out the defects in the suspension of the core in the stator casing; analysis of the impurities in the cooling gas and in the dry remains of the drainage products to detect the products of the steel core and the winding insulation wear; value measurement and establishment of the partial discharges formation position; research of vibrations to reveal the cracks in the shaft, circuiting in the rotor windings and defects in the bearings. The paper notes that at upgrading as power grows overall and mounting dimensions must be preserved so that the existing foundation could be used as well as the existing security systems. Therefore, when designing or upgrading turbogenerators with an increase in power it is necessary to introduce new design decisionsReferences
Шевченко В.В. Модернизация конструкций отечественных турбогенераторов с учетом требований поддержания их конкурентоспособности / В.В. Шевченко // Вісник Національного технічного університету «ХПІ». – Харків : НТУ «ХПІ». – 2014. – № 38(1081). – С. 146-155.
Информационный ресурс : http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
Шевченко В.В. Определение критериев оценки состояния турбогенераторов для установления необходимости их замены или реабилитации / В.В. Шевченко // Вісник Національного технічного університету «ХПІ». – Харків : НТУ «ХПІ». – № 61(967). – 2012. – С. 44-50.
Голоднова О.С. Анализ и мероприятия по предупреждению повреждений сердечников статоров турбогенераторов / О.С. Голоднова, Г.В. Ростик // Электросила. – 2004. – № 43. – С. 56-64.
Шумилов Ю.А. Вибродиагностика как составляющая мониторинга технического со-стояния силовых агрегатов / Ю.А. Шумилов, Б.М. Демидюк, А.В. Штогрин // Праці Інституту електродинаміки НАН України. – 2008. – Вип. 19. – С. 76-80.
Шевченко В.В. Прогнозирование эксплуатационного состояния турбогенераторов / В.В. Шевченко // Электрика (Россия, Москва). – 2015. – № 1. – С. 3-7.
Electromechanical equivalents for use in power system stability studies / J.M. Undrill, J.A. Casazza, E.M. Gulachenski, L.K. Kirchmayer // IEEE Trans, on PAS. – 1971. – Vol. 90. – № 5. – P.р. 2060-2071.
Кузьмин В.В. Оптимизация массогабаритных параметров неактивных частей турбогенераторов / В.В. Кузьмин, В.В. Шевченко, А.Н. Минко. – Харьков : Монограф СПДФЛ А.В. Чальцев, 2012. – 246 с.
Шумилов Ю.А. Результаты экспериментальных исследований вибраций турбогенератора ТВВ-1000-2У3 энергоблока № 3 ЮУ АЭС / Ю.А. Шумилов, Б.М. Демидюк, А.В. Штогрин // Електротехніка і електромеханіка. – Харків : НТУ «ХПІ». – 2008. – № 5. – С. 32-36.
Sih G.C. The Role of Fracture Mechanics in Design Technology / G.C. Sih // Journal of engineering for industry. – November, 1976. – V. 98. – Series B. – № 4. – Р. 113-120.
Шевченко В.В. Структурно-логическая схема снижения массогабаритных параметров турбогенераторов / В.В. Шевченко, А.М. Масленников // Вісник Приазовського державного технічного університету : Зб. наук. пр. / ДВНЗ «ПДТУ». – Маріуполь, 2015. – Вип. 30. – Т. 2. – С. 137-144.
Downloads
How to Cite
Issue
Section
License
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







