DOI: https://doi.org/10.15587/1729-4061.2019.156779

Substantiation of parameters for the technological process of restoring machine parts by the method of plastic deformation

Anatolii Dudnikov, Vladimir Dudnik, Olena Ivankova, Oleksii Burlaka

Abstract


We have studied technological processes related to the restoration of worn-out parts of agricultural machinery (plowshares, cultivator sweeps) that operate under conditions of intensive abrasive wear. We have determined the influence of operating parameters of the technological process on the quality of the restored surface of the cutting elements of machines’ working bodies under conditions of regular and vibration deformation. It was noted that the restoration technologies based on vibratory oscillations make it possible to create new machining methods characterized by higher intensity: the physical-mechanical properties of the recovered parts’ material, their shape and dimensions, as well as machining regimes. We have performed a strain gauge study of changes in the parameters of cutting elements in the working bodies of tillage machines, which made it possible to determine the magnitude of deformation when parts are machined. We have constructed a mathematical model of the dynamics of abrasive wear of the above-specified working bodies, which allowed us to define the patterns in the wear intensity distribution of a working body’s cutting element.

Based on the derived curves of density distribution of wear magnitudes for cutting elements in the specified parts, we have defined a wear law that revealed patterns of change in the strained-stressed state of the working surface in a cutting element. We have estimated the influence of basic factors on the processes occurring in the material of parts during operation. The main factors for vibration machining of the parts’ working surface have been established: the amplitude, frequency of oscillations of a machining tool, the time of hardening. The criteria for the threshold condition of parts under conditions of abrasive wear have been defined: the thickness of edge of the cutting element of parts and a change in size. We have established the positive role of compressive stresses when machining the parts’ material in their wear-resistance improvement. A dependence of the magnitude of parts’ wear on the following key factors has been established: their material, restoration technique, operation duration. It has been proven that the use of vibratory oscillations of the machining working body reduces the intensity of wear of parts in tillage machinery, which is important and relevant to improving the reliability of agricultural machines

Keywords


hardening treatment; plastic deformation; vibration strengthening; residual stresses; surface roughness; wear rate

References


Babey, Yu. I., Butkov, B. I., Sysov, V. G. (1995). Poverhnostnoe uprochnenie metallov. Kyiv: Naukova Dumka, 253.

Bilousko, Ya. K., Burylko, A. V., Halushko, V. O. (2007). Problemy realizatsiyi tekhnichnoi polityky v ahropromyslovomu kompleksi. Kyiv: NNTs IAE, 216.

Świercz, R., Oniszczuk-Świercz, D. (2017). Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining. Metals, 7 (12), 550. doi: https://doi.org/10.3390/met7120550

Nikolaenko, A., Hussein, A. T. (2014). Modeling of vibrating machine-tool with improved construction. ТЕKA. Commission of motorization and energetics in agriculture, 14 (1), 174–181. Available at: http://www.pan-ol.lublin.pl/wydawnictwa/TMot14_1/Teka_14_1.pdf

Djema, M., Hanouda, K., Babichev, A., Saidi, D., Halimi, D. (2012). Effect of vibro-impact strengthening on the fatigue strength of metallic surfaces. Metall, 5, 23–25.

Mamalis, A. G., Grabchenko, A. I., Mitsyk, A. V., Fedorovich, V. A., Kundrak, J. (2013). Mathematical simulation of motion of working medium at finishing–grinding treatment in the oscillating reservoir. The International Journal of Advanced Manufacturing Technology, 70 (1-4), 263–276. doi: https://doi.org/10.1007/s00170-013-5257-6

Dudnykov, A., Belovod, A., Pasyuta, A., Gorbenko, A., Kelemesh, A. (2015). Dynamics of wear of the cutting elements of tillers. Annals of Wasaw University of Life Sciencec – SGGW, 65, 15–19.

Belevskii, L. S., Belevskaya, I. V., Belov, V. K., Gubarev, E. V., Efimova, Y. Y. (2016). Surface Modification of Products by Plastic Deformation and the Application of Functional Coatings. Metallurgist, 60 (3-4), 434–439. doi: https://doi.org/10.1007/s11015-016-0310-y

Hamouda, K., Bournine, H., Tamarkin, M. A., Babichev, A. P., Saidi, D., Amrou, H. E. (2016). Effect of the Velocity of Rotation in the Process of Vibration Grinding on the Surface State. Materials Science, 52 (2), 216–221. doi: https://doi.org/10.1007/s11003-016-9946-9

Aftanaziv, I. S., Bernik, P. S., Sivak, R. I., Klimenko, A. D. (2002). Vibracionno-centrobezhnaya uprochnyayushchaya obrabotka detaley. Vinnica: VDAU, 235.

Stotsko, Z., Kusyj, J., Topilnytskyj, V. (2012). Research of vibratory-centrifugal strain hardening on surface quality of cylindric long-sized machine parts. Journal of Manufacturing and Industrial Engineering, 11, 15–17.

Lou, Y., He, J. S., Chen, H., Long, M. (2016). Effects of vibration amplitude and relative grain size on the rheological behavior of copper during ultrasonic-assisted microextrusion. The International Journal of Advanced Manufacturing Technology, 89 (5-8), 2421–2433. doi: https://doi.org/10.1007/s00170-016-9288-7

Gichan, V. (2011). Active control of the process and results of treatment. Journal of Vibroengineering, 13 (2), 371–375.

Jurcius, A., Valiulis, A., Kumslytis, V. (2008). Vibratory stress relieving – It's advantages as an alternative to thermal treatment. Journal of Vibroengineering, 10 (1), 123–127.

Djema, M. A., Hamouda, K., Babichev, A. P., Saidi, D., Halimi, D. (2012). The Impact of Mechanical Vibration on the Hardening of Metallic Surface. Advanced Materials Research, 626, 90–94. doi: https://doi.org/10.4028/www.scientific.net/amr.626.90

Dudnykov, A., Belovod, O., Dudnyk, V., Kanivets, O., Kelemesh, A. (2011). Effect of part cutting type on stress state of material. Annals of Wasaw University of Life Sciencec. SGGW, 58, 85–87.

Anilovych, V. Ya., Hrynchenko, O. S., Lytvynenko, V. L. (2001). Nadiynist mashyn v zavdanniakh ta prykladakh. Kharkiv: Oko, 320.

Kachinskiy, N. A. (1985). Fizika pochv. Moscow: Vysshaya shkola, 224.


GOST Style Citations


Babey Yu. I., Butkov B. I., Sysov V. G. Poverhnostnoe uprochnenie metallov. Kyiv: Naukova Dumka, 1995. 253 p.

Bilousko Ya. K., Burylko A. V., Halushko V. O. Problemy realizatsiyi tekhnichnoi polityky v ahropromyslovomu kompleksi. Kyiv: NNTs IAE, 2007. 216 p.

Świercz R., Oniszczuk-Świercz D. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining // Metals. 2017. Vol. 7, Issue 12. P. 550. doi: https://doi.org/10.3390/met7120550 

Nikolaenko A., Hussein A. T. Modeling of vibrating machine-tool with improved construction // ТЕKA. Commission of motorization and energetics in agriculture. 2014. Vol. 14, Issue 1. P. 174–181. URL: http://www.pan-ol.lublin.pl/wydawnictwa/TMot14_1/Teka_14_1.pdf

Effect of vibro-impact strengthening on the fatigue strength of metallic surfaces / Djema M., Hanouda K., Babichev A., Saidi D., Halimi D. // Metall. 2012. Issue 5. P. 23–25.

Mathematical simulation of motion of working medium at finishing–grinding treatment in the oscillating reservoir / Mamalis A. G., Grabchenko A. I., Mitsyk A. V., Fedorovich V. A., Kundrak J. // The International Journal of Advanced Manufacturing Technology. 2013. Vol. 70, Issue 1-4. P. 263–276. doi: https://doi.org/10.1007/s00170-013-5257-6 

Dynamics of wear of the cutting elements of tillers / Dudnykov A., Belovod A., Pasyuta A., Gorbenko A., Kelemesh A. // Annals of Wasaw University of Life Sciencec – SGGW. 2015. Issue 65. P. 15–19.

Surface Modification of Products by Plastic Deformation and the Application of Functional Coatings / Belevskii L. S., Belevskaya I. V., Belov V. K., Gubarev E. V., Efimova Y. Y. // Metallurgist. 2016. Vol. 60, Issue 3-4. P. 434–439. doi: https://doi.org/10.1007/s11015-016-0310-y 

Effect of the Velocity of Rotation in the Process of Vibration Grinding on the Surface State / Hamouda K., Bournine H., Tamarkin M. A., Babichev A. P., Saidi D., Amrou H. E. // Materials Science. 2016. Vol. 52, Issue 2. P. 216–221. doi: https://doi.org/10.1007/s11003-016-9946-9 

Vibracionno-centrobezhnaya uprochnyayushchaya obrabotka detaley: monografiya / Aftanaziv I. S., Bernik P. S., Sivak R. I., Klimenko A. D. Vinnica: VDAU, 2002. 235 p.

Stotsko Z., Kusyj J., Topilnytskyj V. Research of vibratory-centrifugal strain hardening on surface quality of cylindric long-sized machine parts // Journal of Manufacturing and Industrial Engineering. 2012. Vol. 11. P. 15–17.

Effects of vibration amplitude and relative grain size on the rheological behavior of copper during ultrasonic-assisted microextrusion / Lou Y., He J. S., Chen H., Long M. // The International Journal of Advanced Manufacturing Technology. 2016. Vol. 89, Issue 5-8. P. 2421–2433. doi: https://doi.org/10.1007/s00170-016-9288-7 

Gichan V. Active control of the process and results of treatment // Journal of Vibroengineering. 2011. Vol. 13, Issue 2. Р. 371–375.

Jurcius A., Valiulis A., Kumslytis V. Vibratory stress relieving – It's advantages as an alternative to thermal treatment // Journal of Vibroengineering. 2008. Vol. 10, Issue 1. Р. 123–127.

The Impact of Mechanical Vibration on the Hardening of Metallic Surface / Djema M. A., Hamouda K., Babichev A. P., Saidi D., Halimi D. // Advanced Materials Research. 2012. Vol. 626. P. 90–94. doi: https://doi.org/10.4028/www.scientific.net/amr.626.90 

Effect of part cutting type on stress state of material / Dudnykov A., Belovod O., Dudnyk V., Kanivets O., Kelemesh A. // Annals of Wasaw University of Life Sciencec. SGGW. 2011. Issue 58. P. 85–87.

Anilovych V. Ya., Hrynchenko O. S., Lytvynenko V. L. Nadiynist mashyn v zavdanniakh ta prykladakh. Kharkiv: Oko, 2001. 320 p.

Kachinskiy N. A. Fizika pochv. Moscow: Vysshaya shkola, 1985. 224 p.







Copyright (c) 2019 Anatolii Dudnikov, Vladimir Dudnik, Olena Ivankova, Oleksii Burlaka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061