Substantiation of parameters for the technological process of restoring machine parts by the method of plastic deformation
DOI:
https://doi.org/10.15587/1729-4061.2019.156779Keywords:
hardening treatment, plastic deformation, vibration strengthening, residual stresses, surface roughness, wear rateAbstract
We have studied technological processes related to the restoration of worn-out parts of agricultural machinery (plowshares, cultivator sweeps) that operate under conditions of intensive abrasive wear. We have determined the influence of operating parameters of the technological process on the quality of the restored surface of the cutting elements of machines’ working bodies under conditions of regular and vibration deformation. It was noted that the restoration technologies based on vibratory oscillations make it possible to create new machining methods characterized by higher intensity: the physical-mechanical properties of the recovered parts’ material, their shape and dimensions, as well as machining regimes. We have performed a strain gauge study of changes in the parameters of cutting elements in the working bodies of tillage machines, which made it possible to determine the magnitude of deformation when parts are machined. We have constructed a mathematical model of the dynamics of abrasive wear of the above-specified working bodies, which allowed us to define the patterns in the wear intensity distribution of a working body’s cutting element.
Based on the derived curves of density distribution of wear magnitudes for cutting elements in the specified parts, we have defined a wear law that revealed patterns of change in the strained-stressed state of the working surface in a cutting element. We have estimated the influence of basic factors on the processes occurring in the material of parts during operation. The main factors for vibration machining of the parts’ working surface have been established: the amplitude, frequency of oscillations of a machining tool, the time of hardening. The criteria for the threshold condition of parts under conditions of abrasive wear have been defined: the thickness of edge of the cutting element of parts and a change in size. We have established the positive role of compressive stresses when machining the parts’ material in their wear-resistance improvement. A dependence of the magnitude of parts’ wear on the following key factors has been established: their material, restoration technique, operation duration. It has been proven that the use of vibratory oscillations of the machining working body reduces the intensity of wear of parts in tillage machinery, which is important and relevant to improving the reliability of agricultural machinesReferences
- Babey, Yu. I., Butkov, B. I., Sysov, V. G. (1995). Poverhnostnoe uprochnenie metallov. Kyiv: Naukova Dumka, 253.
- Bilousko, Ya. K., Burylko, A. V., Halushko, V. O. (2007). Problemy realizatsiyi tekhnichnoi polityky v ahropromyslovomu kompleksi. Kyiv: NNTs IAE, 216.
- Świercz, R., Oniszczuk-Świercz, D. (2017). Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining. Metals, 7 (12), 550. doi: https://doi.org/10.3390/met7120550
- Nikolaenko, A., Hussein, A. T. (2014). Modeling of vibrating machine-tool with improved construction. ТЕKA. Commission of motorization and energetics in agriculture, 14 (1), 174–181. Available at: http://www.pan-ol.lublin.pl/wydawnictwa/TMot14_1/Teka_14_1.pdf
- Djema, M., Hanouda, K., Babichev, A., Saidi, D., Halimi, D. (2012). Effect of vibro-impact strengthening on the fatigue strength of metallic surfaces. Metall, 5, 23–25.
- Mamalis, A. G., Grabchenko, A. I., Mitsyk, A. V., Fedorovich, V. A., Kundrak, J. (2013). Mathematical simulation of motion of working medium at finishing–grinding treatment in the oscillating reservoir. The International Journal of Advanced Manufacturing Technology, 70 (1-4), 263–276. doi: https://doi.org/10.1007/s00170-013-5257-6
- Dudnykov, A., Belovod, A., Pasyuta, A., Gorbenko, A., Kelemesh, A. (2015). Dynamics of wear of the cutting elements of tillers. Annals of Wasaw University of Life Sciencec – SGGW, 65, 15–19.
- Belevskii, L. S., Belevskaya, I. V., Belov, V. K., Gubarev, E. V., Efimova, Y. Y. (2016). Surface Modification of Products by Plastic Deformation and the Application of Functional Coatings. Metallurgist, 60 (3-4), 434–439. doi: https://doi.org/10.1007/s11015-016-0310-y
- Hamouda, K., Bournine, H., Tamarkin, M. A., Babichev, A. P., Saidi, D., Amrou, H. E. (2016). Effect of the Velocity of Rotation in the Process of Vibration Grinding on the Surface State. Materials Science, 52 (2), 216–221. doi: https://doi.org/10.1007/s11003-016-9946-9
- Aftanaziv, I. S., Bernik, P. S., Sivak, R. I., Klimenko, A. D. (2002). Vibracionno-centrobezhnaya uprochnyayushchaya obrabotka detaley. Vinnica: VDAU, 235.
- Stotsko, Z., Kusyj, J., Topilnytskyj, V. (2012). Research of vibratory-centrifugal strain hardening on surface quality of cylindric long-sized machine parts. Journal of Manufacturing and Industrial Engineering, 11, 15–17.
- Lou, Y., He, J. S., Chen, H., Long, M. (2016). Effects of vibration amplitude and relative grain size on the rheological behavior of copper during ultrasonic-assisted microextrusion. The International Journal of Advanced Manufacturing Technology, 89 (5-8), 2421–2433. doi: https://doi.org/10.1007/s00170-016-9288-7
- Gichan, V. (2011). Active control of the process and results of treatment. Journal of Vibroengineering, 13 (2), 371–375.
- Jurcius, A., Valiulis, A., Kumslytis, V. (2008). Vibratory stress relieving – It's advantages as an alternative to thermal treatment. Journal of Vibroengineering, 10 (1), 123–127.
- Djema, M. A., Hamouda, K., Babichev, A. P., Saidi, D., Halimi, D. (2012). The Impact of Mechanical Vibration on the Hardening of Metallic Surface. Advanced Materials Research, 626, 90–94. doi: https://doi.org/10.4028/www.scientific.net/amr.626.90
- Dudnykov, A., Belovod, O., Dudnyk, V., Kanivets, O., Kelemesh, A. (2011). Effect of part cutting type on stress state of material. Annals of Wasaw University of Life Sciencec. SGGW, 58, 85–87.
- Anilovych, V. Ya., Hrynchenko, O. S., Lytvynenko, V. L. (2001). Nadiynist mashyn v zavdanniakh ta prykladakh. Kharkiv: Oko, 320.
- Kachinskiy, N. A. (1985). Fizika pochv. Moscow: Vysshaya shkola, 224.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Anatolii Dudnikov, Vladimir Dudnik, Olena Ivankova, Oleksii Burlaka
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.