Estimation of the dynamics of power grid operating parameters based on standard load curves

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.184095

Keywords:

power grid, parameter recovery, adequacy, standard load curve, state estimation

Abstract

Power grids are insufficiently equipped with means of monitoring of operating parameters. The infrastructure of commercial power consumption accounting systems is the most developed. However, power consumption information is stored in the aggregated form. This makes it impossible to determine the components of the balance losses of power and to analyze their structure without simplification.

It is suggested to use standard load curves to increase the adequacy of the results of estimating the operating dynamics of power grids. In order to match the measured operating parameters and pseudomeasures calculated by standard load curves, it is proposed to use an algorithm based on the least-squares method. Accuracy estimation is carried out by comparing power consumption curves of the absolutely observable network with simulation results.

It is found that the use of standard load curves allows restoring power consumption curves with acceptable accuracy in the complete absence of measurements. Conversion of aggregated information of commercial power consumption accounting systems into time graphs helps to improve the accuracy of simulation results of characteristic grid modes. As a result, the accuracy of determining technical losses and other components in the power balance structure is increased.

Clarification of the components of power losses in the balance structure allows identifying the problematic elements of power grids and developing better measures to improve their energy efficiency. In addition, the use of standard load curves and formation of pseudomeasures reduces the cost of monitoring systems of power grid parameters

Author Biographies

Yurii Tomashevskyi, Vinnitsaoblenergo PJSC Mahistratska str., 2, Vinnytsia, Ukraine, 21050

Chief Information Officer

Oleksander Burykin, Vinnytsia National Technical University Khmelnytske highway, 95, Vinnytsia, Ukraine, 21021

PhD, Associate Professor

Department of Power Plants and Systems

Volodymyr Kulyk, Vinnytsia National Technical University Khmelnytske highway, 95, Vinnytsia, Ukraine, 21021

Doctor of Technical Sciences, Associate Professor

Department of Power Plants and Systems

Juliya Malogulko, Vinnytsia National Technical University Khmelnytske highway, 95, Vinnytsia, Ukraine, 21021

PhD, Associate Professor

Department of Power Plants and Systems

References

  1. Von Meier, A., Stewart, E., McEachern, A., Andersen, M., Mehrmanesh, L. (2017). Precision Micro-Synchrophasors for Distribution Systems: A Summary of Applications. IEEE Transactions on Smart Grid, 8 (6), 2926–2936. doi: https://doi.org/10.1109/tsg.2017.2720543
  2. Majumdar, A., Agalgaonkar, Y. P., Pal, B. C., Gottschalg, R. (2018). Centralized Volt–Var Optimization Strategy Considering Malicious Attack on Distributed Energy Resources Control. IEEE Transactions on Sustainable Energy, 9 (1), 148–156. doi: https://doi.org/10.1109/tste.2017.2706965
  3. Grigoras, G., Cartina, G., Bobric, E. C., Barbulescu, C. (2009). Missing data treatment of the load profiles in distribution networks. 2009 IEEE Bucharest PowerTech. doi: https://doi.org/10.1109/ptc.2009.5282021
  4. Zhichao, L., Yuping, Z. (2018). Research on Distribution Network Operation and Control Technology Based on Big Data Analysis. 2018 China International Conference on Electricity Distribution (CICED). doi: https://doi.org/10.1109/ciced.2018.8592531
  5. Cheng, C., Gao, H., An, Y., Cheng, X., Yang, J. (2015). Calculation method and analysis of power flow for distribution network with distributed generation. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). doi: https://doi.org/10.1109/drpt.2015.7432571
  6. Brockmeier, L., Kromrey, J., Hogart, K. (2003). Nonrandomly Missing Data in Multiple Regression Analysis: An Empirical Comparison of Ten Missing Data Treatments. Multiple Linear Regression Viewpoints, 29 (1), 8–29.
  7. Acuña, E., Rodriguez, C. (2004). The Treatment of Missing Values and its Effect on Classifier Accuracy. Classification, Clustering, and Data Mining Applications, 639–647. doi: https://doi.org/10.1007/978-3-642-17103-1_60
  8. Kim, Y.-I., Shin, J.-H., Song, J.-J., Yang, I.-K. (2009). Customer clustering and TDLP (typical daily load profile) generation using the clustering algorithm. 2009 Transmission & Distribution Conference & Exposition: Asia and Pacific. doi: https://doi.org/10.1109/td-asia.2009.5356926
  9. Alimardani, A., Therrien, F., Atanackovic, D., Jatskevich, J., Vaahedi, E. (2015). Distribution System State Estimation Based on Nonsynchronized Smart Meters. IEEE Transactions on Smart Grid, 6 (6), 2919–2928. doi: https://doi.org/10.1109/tsg.2015.2429640
  10. Panapakidis, I. P., Papagiannis, G. K. (2014). Application of the load profiling methodology in short-term bus load forecasting. MedPower 2014. doi: https://doi.org/10.1049/cp.2014.1694
  11. Buslavets, O. A., Kvytsynskyi, A. O., Kudatskyi, L. N., Mezhennyi, S. Ya., Moiseienko, L. V. (2016). Typovi hrafiky elektrychnykh navantazhen u 3D zobrazhenni. Enerhetyka ta elektryfikatsiya, 2, 2–12.
  12. Kontseptsiya pobudovy avtomatyzovanykh system komertsiynoho obliku elektroenerhiyi v umovakh enerhorynku, zatverdzhena spilnym nakazom Minpalyvenerho, NKRE, Derzhkomenerhozberezhennia, Derzhstandartu, Derzhbudu, Derzhprompolityky No. 32/28 / 28/ 276 /75/54 vid 17 kvitnia 2000 r.
  13. Pazderin, A. V., Egorov, A. O., Kochneva, E. S., Samoylenko, V. O. (2014). Ispol'zovanie metodicheskih podhodov teorii otsenivaniya sostoyaniya dlya rascheta i dostoverizatsii potokov elektricheskoy energii v setyah. Elektrichestvo, 10, 12–21.
  14. Hagh, M. T., Mahaei, S. M., Zare, K. (2011). Improving Bad Data Detection in State Estimation of Power Systems. International Journal of Electrical and Computer Engineering (IJECE), 1 (2). doi: https://doi.org/10.11591/ijece.v1i2.133
  15. Mili, L., Phaniraj, V., Rousseeuw, P. J. (1991). Least median of squares estimation in power systems. IEEE Transactions on Power Systems, 6 (2), 511–523. doi: https://doi.org/10.1109/59.76693
  16. Gamm, A. Z., Gerasimov, L. N., Golub, I. I. et. al. (1983). Otsenivanie sostoyaniya v elektroenergetike. Moscow: Nauka, 302.
  17. Gómez-Expósito, A., Conejo, A. J., Cañizares, C. (Eds.). (2017). Electric Energy Systems. CRC Press, 664. doi: https://doi.org/10.1201/9781420007275

Downloads

Published

2019-11-18

How to Cite

Tomashevskyi, Y., Burykin, O., Kulyk, V., & Malogulko, J. (2019). Estimation of the dynamics of power grid operating parameters based on standard load curves. Eastern-European Journal of Enterprise Technologies, 6(8 (102), 6–12. https://doi.org/10.15587/1729-4061.2019.184095

Issue

Section

Energy-saving technologies and equipment