The method of determining the parameters of comb-scale distributions

Authors

  • Марина Вячеславовна Полякова Odessa National Polytechnic University Shevchenko 1, Odessa, 65044, Ukraine
  • Алеся Владимировна Ищенко Odessa National Polytechnic University Shevchenko 1, Odessa, 65044, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18440

Keywords:

comb filter, structural texture, generalized function, scaling function

Abstract

Solving of applied problems often requires determining the boundaries of objects, filled with structural texture, on the image. For determining these boundaries and analyzing the spectral content of structural texture images, the methods for sequential parallel analysis are used. Existing methods for solving these problems cause large computational cost. For conversion with a generalized comb scaling functions, the problem of determining the analyzing function parameters, for their adjusting to a particular type of structural texture, was not solved. Therefore, a method of determining the parameters of generalized comb scaling functions was developed for determining the boundaries of structural texture on the image with a uniform background. The proposed method involves two steps. First, a basic function is constructed - generalized comb scaling function, aimed at determining the boundaries of structural textures with known parameters. Then, the parameters of this function are determined, based on vector representation of two-scale difference equation for the values of scaling function at dyadic rational points. The experiment showed that the proposed method of determining the parameters of generalized comb scaling function is appropriate for use under a noise level on the original image not more than 10 by power, as the values of computed characteristics decrease with increasing noise level. Along with this, their values were as follows: the relative error was 0.23 - 0.34 and the coefficient of correlation with true values of parameters was 0.95 - 0.98.

Author Biographies

Марина Вячеславовна Полякова, Odessa National Polytechnic University Shevchenko 1, Odessa, 65044

Docent

Department of Applied Mathematics and Information Technologies

Алеся Владимировна Ищенко, Odessa National Polytechnic University Shevchenko 1, Odessa, 65044

Assistant

Department of Applied Mathematics and Information Technologies

References

  1. Харалик, Р. М. Статистический и структурный походы к описанию текстур [Текст] / Р. М. Харалик // ТИИЭР. — 1979. —Т. 67, № 5.— С. 98—120.
  2. Гонсалес, Р., Цифровая обработка изображений [Текст] : пер. с англ. – П. : Чочиа ; М. : Техносфера, 2005. —1072с.
  3. Lee, K. L. Unsupervised texture segmentation by determining the interior of texture regions based on wavelet transform [Текст] / K. L. Lee, L. H. Chen // International Journal of Pattern Recognition and Artificial Intelligence. — 2001. — Vol. 15, №8.— P. 1231—1250.
  4. Dunn, D. Texture segmentation using 2D Gabor elementary function [Текст] / D. Dunn, W. Higgins, J. Wakeley // IEEE Trans. on PAMI. — 1994. — Vol. 16, №2.— P. 130—149.
  5. Yang, J. C.-Y. Document image segmentation and quality improvement by moiré pattern analysis [Текст] / J. C.-Y. Yang, W.-H. Tsai // Signal Processing: Image Communication. — 2000. —Vol. 15.— P. 781—797.
  6. Финкельштейн, М. И. Гребенчатые фильтры [Текст] / М. И. Финкельштейн. — М. : Советское радио, 1969. — 320 с.
  7. Полякова, М. В. Обобщённые масштабные функции с компактным носителем в задаче сегментации изображений упорядоченных текстур [Текст] / М. В. Полякова, В. Н. Крылов // Автоматика. Автоматизация. Электротехнические комплексы и системы. Межвузовский журнал. — 2007. — №1(19).— С. 75—84.
  8. Daubechies, I. Two-scale difference equations. I. Existence and global regularity of solutions [Текст] / I. Daubechies, J. C. Lagarias // SIAM J. Math. Anal. — 1991. —Vol. 22, №5.— P. 1388—1410.
  9. Оценка периода следования импульсов для пропадающего сигнала методом полных достаточных статистик [Текст] : докл. 8-й междунар. конф.-выст. «Цифровая обработка сигналов и ее применение», 29-30 марта 2006 г. Москва / А. Д. Говорухина, К. Н. Жучков, С. Г. Хоружий. – Москва : DSPA, 2006. –Т. 1.— С. 36—39.
  10. Berg, L. Compactly supported solutions of two-scale difference equations [Текст] / L. Berg, G. Plonka // Linear Algebra Appl. — 1998. —Vol. 275-276.— P. 49—75.
  11. Хайкин, С. Нейронные сети: полный курс [Текст] : пер. с англ. – Н. : Куссуль, А. : Шелестовой. – 2-е изд. ; М. : Вильямс, 2006. —1104с.
  12. Haralik, R. (1979). Statistical and structural trips to the description of textures. TIIER, 67, 98—120.
  13. Gonzalez, R., Woods, R.(2002). Digital Image Processing. Moscow, Technosphere, 1072.
  14. Lee, K., Chen L.(2001). Unsupervised texture segmentation by determining the interior of texture regions based on wavelet transform. International Journal of Pattern Recognition and Artificial Intelligence,15, 1231—1250.
  15. Dunn, D., Higgins, W., Wakeley, W.(1994). Texture segmentation using 2D Gabor elementary function. IEEE Trans. on PAMI, 16, 130—149.
  16. Yang, J., Tsai, C.-Y.(2000). Document image segmentation and quality improvement by moiré pattern analysis. Signal Processing: Image Communication, 15, 781—797.
  17. Finkelshtein, M. I.(1969). Comb filter. Moscow, Soviet radio, 320.
  18. Polyakova, М.V., Krylov, V.N. (2007). Generalized wavelet functions with compact support in the task of image segmentation ordered textures. Automatics, Automation, Electrical systems and systems. Intercollegiate magazine, 1(19), 75-84.
  19. Daubechies, I., Lagarias, J.(1991). Two-scale difference equations. I. Existence and global regularity of solutions. SIAM J. Math. Anal., 22(5), 1388—1410.
  20. Govoruhina, A., Zhuchkov, K, Khoruzhiy, S.(2006). Evaluation cycle time for the signal disappears by complete sufficient statistics. Reports of the 8th International Conference and Exhibition "Digital Signal Processing and its Applications", DSPA, Moscow, 1, 36—39.
  21. Berg, L., Plonka, G.(1998). Compactly supported solutions of two-scale difference equations. Linear Algebra Appl., 275-276, 49—75.
  22. Khaykin S. (2006). Neural Networks. Мoscow, 2, 1104.

Published

2013-10-30

How to Cite

Полякова, М. В., & Ищенко, А. В. (2013). The method of determining the parameters of comb-scale distributions. Eastern-European Journal of Enterprise Technologies, 5(2(65), 38–43. https://doi.org/10.15587/1729-4061.2013.18440