The method of determining the parameters of comb-scale distributions
DOI:
https://doi.org/10.15587/1729-4061.2013.18440Keywords:
comb filter, structural texture, generalized function, scaling functionAbstract
Solving of applied problems often requires determining the boundaries of objects, filled with structural texture, on the image. For determining these boundaries and analyzing the spectral content of structural texture images, the methods for sequential parallel analysis are used. Existing methods for solving these problems cause large computational cost. For conversion with a generalized comb scaling functions, the problem of determining the analyzing function parameters, for their adjusting to a particular type of structural texture, was not solved. Therefore, a method of determining the parameters of generalized comb scaling functions was developed for determining the boundaries of structural texture on the image with a uniform background. The proposed method involves two steps. First, a basic function is constructed - generalized comb scaling function, aimed at determining the boundaries of structural textures with known parameters. Then, the parameters of this function are determined, based on vector representation of two-scale difference equation for the values of scaling function at dyadic rational points. The experiment showed that the proposed method of determining the parameters of generalized comb scaling function is appropriate for use under a noise level on the original image not more than 10 by power, as the values of computed characteristics decrease with increasing noise level. Along with this, their values were as follows: the relative error was 0.23 - 0.34 and the coefficient of correlation with true values of parameters was 0.95 - 0.98.
References
- Харалик, Р. М. Статистический и структурный походы к описанию текстур [Текст] / Р. М. Харалик // ТИИЭР. — 1979. —Т. 67, № 5.— С. 98—120.
- Гонсалес, Р., Цифровая обработка изображений [Текст] : пер. с англ. – П. : Чочиа ; М. : Техносфера, 2005. —1072с.
- Lee, K. L. Unsupervised texture segmentation by determining the interior of texture regions based on wavelet transform [Текст] / K. L. Lee, L. H. Chen // International Journal of Pattern Recognition and Artificial Intelligence. — 2001. — Vol. 15, №8.— P. 1231—1250.
- Dunn, D. Texture segmentation using 2D Gabor elementary function [Текст] / D. Dunn, W. Higgins, J. Wakeley // IEEE Trans. on PAMI. — 1994. — Vol. 16, №2.— P. 130—149.
- Yang, J. C.-Y. Document image segmentation and quality improvement by moiré pattern analysis [Текст] / J. C.-Y. Yang, W.-H. Tsai // Signal Processing: Image Communication. — 2000. —Vol. 15.— P. 781—797.
- Финкельштейн, М. И. Гребенчатые фильтры [Текст] / М. И. Финкельштейн. — М. : Советское радио, 1969. — 320 с.
- Полякова, М. В. Обобщённые масштабные функции с компактным носителем в задаче сегментации изображений упорядоченных текстур [Текст] / М. В. Полякова, В. Н. Крылов // Автоматика. Автоматизация. Электротехнические комплексы и системы. Межвузовский журнал. — 2007. — №1(19).— С. 75—84.
- Daubechies, I. Two-scale difference equations. I. Existence and global regularity of solutions [Текст] / I. Daubechies, J. C. Lagarias // SIAM J. Math. Anal. — 1991. —Vol. 22, №5.— P. 1388—1410.
- Оценка периода следования импульсов для пропадающего сигнала методом полных достаточных статистик [Текст] : докл. 8-й междунар. конф.-выст. «Цифровая обработка сигналов и ее применение», 29-30 марта 2006 г. Москва / А. Д. Говорухина, К. Н. Жучков, С. Г. Хоружий. – Москва : DSPA, 2006. –Т. 1.— С. 36—39.
- Berg, L. Compactly supported solutions of two-scale difference equations [Текст] / L. Berg, G. Plonka // Linear Algebra Appl. — 1998. —Vol. 275-276.— P. 49—75.
- Хайкин, С. Нейронные сети: полный курс [Текст] : пер. с англ. – Н. : Куссуль, А. : Шелестовой. – 2-е изд. ; М. : Вильямс, 2006. —1104с.
- Haralik, R. (1979). Statistical and structural trips to the description of textures. TIIER, 67, 98—120.
- Gonzalez, R., Woods, R.(2002). Digital Image Processing. Moscow, Technosphere, 1072.
- Lee, K., Chen L.(2001). Unsupervised texture segmentation by determining the interior of texture regions based on wavelet transform. International Journal of Pattern Recognition and Artificial Intelligence,15, 1231—1250.
- Dunn, D., Higgins, W., Wakeley, W.(1994). Texture segmentation using 2D Gabor elementary function. IEEE Trans. on PAMI, 16, 130—149.
- Yang, J., Tsai, C.-Y.(2000). Document image segmentation and quality improvement by moiré pattern analysis. Signal Processing: Image Communication, 15, 781—797.
- Finkelshtein, M. I.(1969). Comb filter. Moscow, Soviet radio, 320.
- Polyakova, М.V., Krylov, V.N. (2007). Generalized wavelet functions with compact support in the task of image segmentation ordered textures. Automatics, Automation, Electrical systems and systems. Intercollegiate magazine, 1(19), 75-84.
- Daubechies, I., Lagarias, J.(1991). Two-scale difference equations. I. Existence and global regularity of solutions. SIAM J. Math. Anal., 22(5), 1388—1410.
- Govoruhina, A., Zhuchkov, K, Khoruzhiy, S.(2006). Evaluation cycle time for the signal disappears by complete sufficient statistics. Reports of the 8th International Conference and Exhibition "Digital Signal Processing and its Applications", DSPA, Moscow, 1, 36—39.
- Berg, L., Plonka, G.(1998). Compactly supported solutions of two-scale difference equations. Linear Algebra Appl., 275-276, 49—75.
- Khaykin S. (2006). Neural Networks. Мoscow, 2, 1104.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Марина Вячеславовна Полякова, Алеся Владимировна Ищенко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.