Development of neuronet models to predict voltage deviations in electrical networks
DOI:
https://doi.org/10.15587/1729-4061.2013.11706Keywords:
Neuronet model, efficiency, power consumption, statistical series, prediction, electricity receivers, electrical equipmentAbstract
The article examines the increase of effectiveness of operation of electrical equipment with the help of neuronet model for hourly prediction of voltage deviation in electrical networks of industrial and residential areas, taking into account power quality.
Due to the constant increase in power consumption and increase of its cost, interest to conserve electricity becomes much higher. The upcoming significant increase of power consumption in the cities of Ukraine for the period until 2030, and the increase in urban population confirm the urgency of the problem. Further saturation of flats by electricity receivers of increased power will sharpen the issues of power quality in electrical networks, so there is a certain interest in neuronet models, which have been successfully used in various fields of science and technology. Neural networks present a modern method of simulation, which permit to reproduce extremely complicated dependences.
The proposed model indicates the possibility of its usage as a reference one in the systems of voltage control. Reduction of power consumption in electrical units will save electricity and reduce peak powerReferences
- Гриб, О.Г. Моніторинг показників якості електричної енергії на підприємствах житлово-комунального господарства [Текст] / О.Г. Гриб, О.Н. Довгалюк, В. А. Сапрыка, А. В. Сапрыка // Вісник Харківського національного технічного університету сільського господарства імені Петра Василенка. Випуск 101. Харків, 2010 р. С. 25-27.
- Гриб, О.Г. Контроль потребления электрической энергии с учетом ее качества [Текст] / О.Г. Гриб, В.И. Васильченко, Ю.С. Громадский и др. // Харьков: ХНУРЭ, 2010. – 444 с.
- Хайкин, С. Нейронные сети [Текст] / С. Хайкин – М.: Вильямс, 2006. – 1104с.
- Арутюнян, Р.В. Прогноз электропотребления: анализ временных рядов, геостатистика, искусственные нейронные сети [Текст] / Р.В. Арутюнян и др. // Препринт ИПБРАЭ РАН, 1999. – 260с.
- Савка, Н.Я. Застосування штучних нейронних мереж з радіально-базисними функцшями для розв язування задач прогнозування [Текст] / Н. Я. Савка // Комунальне господарство міст. Наук.–техн. зб. Вып. 97 – Х: ХНАМГ. - 2011. С. 349- 353 .
- Будак, В.П. Использование искусственных нейронных сетей в атмосферной оптике и их программирование в MATLAB с помощью NEURAL NETWORK TOOLBOX [Текст] / В. П. Будак, Д. А. Клюйков// Труды III науч. конф. «Проектирование инженерных и научных приложений в среде MATLAB. М. МЭИ. С.893-899.
- Галушкин, А.И. Теория нейронных сетей. [Текст] / А. И. Галушкин. – М.: ИПРЖР, 2000. -416с.
- Бокс, Дж. Анализ временных рядов. Прогноз и управление [Текст] / Дж. Бокс, Г. Дженикс. – М.: Мир. 1974. – 406с.
- Сапрыка, А. В. Разроботка нейросетевой модели для прогнозирования отклонения напряжения в осветительных сетях [Текст] / А. В. Сапрыка // – Промелектро №5: 2010. – С 15-19.
- Вахнина, В.В. Разработка нейросетевой модели для прогнозирования планового почасового потребления электрической энергии промышленной и селитебной зоны автозаводского района г. Тольятти [Текст] / В. В. Вахнина, П.А. Киселяускас, Э.Ф. Хафизов// Труды Межд. науч.-техн. конф. «Проблемы электротехники, электроэнергетики и электротехнологии». – Тольятти: ТГУ. – 2009. – С. 105-108.
- Grib O The control of electric energy consumption with its quality / O. Grib, V. Vasilchenko, Y. Gromadsky etc. / / Kharkov: KHNURE, 2010. - 444 p.
- Haykin S. Neural networks / S. Haykin - M. Williams, 2006. - 1104s.
- R. Harutyunyan Forecast of power: time series analysis, geostatistics, artificial neural networks / RV Harutyunyan and others / / Preprint IPBRAE Sciences, 1999. - 260.
- Sapryka A. Razrobotka neural network model to predict the voltage fluctuation in the lighting network / AV Sapryka / / - Promelektro number 5: 2010. - From 15-19.
- Vakhnina V. The development of neural network models to predict planned hourly electricity consumption of industrial and residential areas Avtozavodsky district of Togliatti / VV Vakhnina, PA Kiselyauskas, EF Hafiz / / Proceedings of the Int. scientific and engineering. Conf. "The problems of electrical engineering, and electrical power." - Togliatti TSU. - 2009. - Pp. 105-108.
- Budak, VP The use of artificial neural networks in atmospheric optics and programming in MATLAB using NEURAL NETWORK TOOLBOX [Text] / VP Budak, DA Klyuykov / / Proceedings of the III Scientific. Conf. "Design engineering and scientific applications in MATLAB. M. MEI. S.893-899.
- Galushkin, AI The theory of neural networks. [Text] / A. Galushkin. - Moscow: IPRZHR, 2000. -416s.
- Boxing, J. Time Series Analysis. Forecast and Control [Text] / J. Box, H. Dzheniks. - Mir. 1974. - 406s.
- Sapryka, AV Razrobotka neural network model to predict the voltage fluctuation in lighting networks [Text] / A. Sapryka / / - Promelektro number 5: 2010. - From 15-19.
- Vakhnina, VV The development of neural network models to predict planned hourly electricity consumption of industrial and residential areas Avtozavodsky district of Togliatti [Text] / VV Vakhnina, PA Kiselyauskas, EF Hafiz / / Proceedings of the Int. scientific and engineering. Conf. "The problems of electrical engineering, and electrical power." - Togliatti TSU. - 2009. - Pp. 105-108.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Василь Олександрович Саприка, Олег Герасимович Гриб, Олександр Вікторович Саприка, Леонід Юліанович Ступішін
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.