Development of neuronet models to predict voltage deviations in electrical networks

Authors

  • Василь Олександрович Саприка Kharkiv National University "Kharkiv Polytechnic Institute" Str. Frunze 21, Kharkov, Ukraine, 61002, Ukraine
  • Олег Герасимович Гриб Kharkiv National University "Kharkiv Polytechnic Institute" Str. Frunze 21, Kharkov, Ukraine, 61002, Ukraine
  • Олександр Вікторович Саприка Kharkiv National Academy of Municipal Economy Str. Revolution, 12, Kharkov, Ukraine, 61002, Ukraine
  • Леонід Юліанович Ступішін South-Western State University Str. October 50, 94 Kursk, Russia 305040,, Russian Federation

DOI:

https://doi.org/10.15587/1729-4061.2013.11706

Keywords:

Neuronet model, efficiency, power consumption, statistical series, prediction, electricity receivers, electrical equipment

Abstract

The article examines the increase of effectiveness of operation of electrical equipment with the help of neuronet model for hourly prediction of voltage deviation in electrical networks of industrial and residential areas, taking into account power quality.

Due to the constant increase in power consumption and increase of its cost, interest to conserve electricity becomes much higher. The upcoming significant increase of power consumption in the cities of Ukraine for the period until 2030, and the increase in urban population confirm the urgency of the problem. Further saturation of flats by electricity receivers of increased power will sharpen the issues of power quality in electrical networks, so there is a certain interest in neuronet models, which have been successfully used in various fields of science and technology. Neural networks present a modern method of simulation, which permit to reproduce extremely complicated dependences.

The proposed model indicates the possibility of its usage as a reference one in the systems of voltage control. Reduction of power consumption in electrical units will save electricity and reduce peak power

Author Biographies

Василь Олександрович Саприка, Kharkiv National University "Kharkiv Polytechnic Institute" Str. Frunze 21, Kharkov, Ukraine, 61002

Engineer

Department of Automation Products

Олег Герасимович Гриб, Kharkiv National University "Kharkiv Polytechnic Institute" Str. Frunze 21, Kharkov, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Automation Products

Олександр Вікторович Саприка, Kharkiv National Academy of Municipal Economy Str. Revolution, 12, Kharkov, Ukraine, 61002

PhD, Associate Professor

The Department of electricity cities

Леонід Юліанович Ступішін, South-Western State University Str. October 50, 94 Kursk, Russia 305040,

PhD, Associate Professor

Department of urban road construction and structural mechanics

References

  1. Гриб, О.Г. Моніторинг показників якості електричної енергії на підприємствах житлово-комунального господарства [Текст] / О.Г. Гриб, О.Н. Довгалюк, В. А. Сапрыка, А. В. Сапрыка // Вісник Харківського національного технічного університету сільського господарства імені Петра Василенка. Випуск 101. Харків, 2010 р. С. 25-27.
  2. Гриб, О.Г. Контроль потребления электрической энергии с учетом ее качества [Текст] / О.Г. Гриб, В.И. Васильченко, Ю.С. Громадский и др. // Харьков: ХНУРЭ, 2010. – 444 с.
  3. Хайкин, С. Нейронные сети [Текст] / С. Хайкин – М.: Вильямс, 2006. – 1104с.
  4. Арутюнян, Р.В. Прогноз электропотребления: анализ временных рядов, геостатистика, искусственные нейронные сети [Текст] / Р.В. Арутюнян и др. // Препринт ИПБРАЭ РАН, 1999. – 260с.
  5. Савка, Н.Я. Застосування штучних нейронних мереж з радіально-базисними функцшями для розв язування задач прогнозування [Текст] / Н. Я. Савка // Комунальне господарство міст. Наук.–техн. зб. Вып. 97 – Х: ХНАМГ. - 2011. С. 349- 353 .
  6. Будак, В.П. Использование искусственных нейронных сетей в атмосферной оптике и их программирование в MATLAB с помощью NEURAL NETWORK TOOLBOX [Текст] / В. П. Будак, Д. А. Клюйков// Труды III науч. конф. «Проектирование инженерных и научных приложений в среде MATLAB. М. МЭИ. С.893-899.
  7. Галушкин, А.И. Теория нейронных сетей. [Текст] / А. И. Галушкин. – М.: ИПРЖР, 2000. -416с.
  8. Бокс, Дж. Анализ временных рядов. Прогноз и управление [Текст] / Дж. Бокс, Г. Дженикс. – М.: Мир. 1974. – 406с.
  9. Сапрыка, А. В. Разроботка нейросетевой модели для прогнозирования отклонения напряжения в осветительных сетях [Текст] / А. В. Сапрыка // – Промелектро №5: 2010. – С 15-19.
  10. Вахнина, В.В. Разработка нейросетевой модели для прогнозирования планового почасового потребления электрической энергии промышленной и селитебной зоны автозаводского района г. Тольятти [Текст] / В. В. Вахнина, П.А. Киселяускас, Э.Ф. Хафизов// Труды Межд. науч.-техн. конф. «Проблемы электротехники, электроэнергетики и электротехнологии». – Тольятти: ТГУ. – 2009. – С. 105-108.
  11. Grib O The control of electric energy consumption with its quality / O. Grib, V. Vasilchenko, Y. Gromadsky etc. / / Kharkov: KHNURE, 2010. - 444 p.
  12. Haykin S. Neural networks / S. Haykin - M. Williams, 2006. - 1104s.
  13. R. Harutyunyan Forecast of power: time series analysis, geostatistics, artificial neural networks / RV Harutyunyan and others / / Preprint IPBRAE Sciences, 1999. - 260.
  14. Sapryka A. Razrobotka neural network model to predict the voltage fluctuation in the lighting network / AV Sapryka / / - Promelektro number 5: 2010. - From 15-19.
  15. Vakhnina V. The development of neural network models to predict planned hourly electricity consumption of industrial and residential areas Avtozavodsky district of Togliatti / VV Vakhnina, PA Kiselyauskas, EF Hafiz / / Proceedings of the Int. scientific and engineering. Conf. "The problems of electrical engineering, and electrical power." - Togliatti TSU. - 2009. - Pp. 105-108.
  16. Budak, VP The use of artificial neural networks in atmospheric optics and programming in MATLAB using NEURAL NETWORK TOOLBOX [Text] / VP Budak, DA Klyuykov / / Proceedings of the III Scientific. Conf. "Design engineering and scientific applications in MATLAB. M. MEI. S.893-899.
  17. Galushkin, AI The theory of neural networks. [Text] / A. Galushkin. - Moscow: IPRZHR, 2000. -416s.
  18. Boxing, J. Time Series Analysis. Forecast and Control [Text] / J. Box, H. Dzheniks. - Mir. 1974. - 406s.
  19. Sapryka, AV Razrobotka neural network model to predict the voltage fluctuation in lighting networks [Text] / A. Sapryka / / - Promelektro number 5: 2010. - From 15-19.
  20. Vakhnina, VV The development of neural network models to predict planned hourly electricity consumption of industrial and residential areas Avtozavodsky district of Togliatti [Text] / VV Vakhnina, PA Kiselyauskas, EF Hafiz / / Proceedings of the Int. scientific and engineering. Conf. "The problems of electrical engineering, and electrical power." - Togliatti TSU. - 2009. - Pp. 105-108.

Published

2013-04-25

How to Cite

Саприка, В. О., Гриб, О. Г., Саприка, О. В., & Ступішін, Л. Ю. (2013). Development of neuronet models to predict voltage deviations in electrical networks. Eastern-European Journal of Enterprise Technologies, 2(3(62), 9–11. https://doi.org/10.15587/1729-4061.2013.11706

Issue

Section

Control systems