Improvement of a discharge nozzle damping attachment to suppress fires of class D

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.144874

Keywords:

discharge nozzle damping attachment, fire of light metals, extinguishing the fire of magnesium, optimal pressure, optimal distance

Abstract

The software package COSMOSFloWorks has been used to study a discharge nozzle damping attachment. A procedure has been proposed to estimate the covering of surface with dimensions of 0.4×0.4 m by a fire-extinguishing powder. It was established that existing discharge nozzle damping attachments are not efficient because at extinguishing light metals they do not effectively reduce the speed of powder supply onto a flammable surface and fan the fire, not being able to cover the burning surface by a fire-extinguishing powder. After putting out the fire the surface that was covered with powder reveals the burnouts. We have modeled the optimal structural parameters for a discharge nozzle damping attachment in order to extinguish fires of class D in the form of a discharge nozzle damping attachment with an elliptical top and a parabolic reflector. It has been proven that a damping attachment with two working surfaces outperforms the previous damping attachment with a single working surface by 30 %. Given this, the fire-extinguishing powder covers the burning surface by a larger layer, preventing the fanning of chips from the surface of a burning metal, thereby shortening the duration of burning and improving the efficiency of a fire-extinguishing powder supply. Experimental study has confirmed that the use of a damping attachment that supplies a fire-extinguishing powder with two working surfaces in order to extinguish fires of class D increases the powder feed to a fire site, reaching above 90 %.

The diameter and the shape of the attachment have been determined. The attachment must acquire the form of a diffuser with a diameter of 16 mm.

Our development could be used when designing the stationary and portable fire extinguishing systems for light metals and alloys, including incendiary grenades under condition of proper selection of the powder. We have achieved positive results during field tests of the discharge nozzle damping attachment using a make-up fire to burn the shavings of magnesium alloys

Author Biographies

Vasyl Kovalyshyn, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007

Doctor of Technical Sciences, Professor, Head of Department

Department of Emergencies Recovery

Volodymyr Marych, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007

Adjunct

Department of Industrial and Occupational Safety

Yaroslav Novitskyi, Lviv Polytechnic National University S. Bandera str.,12, Lviv, Ukraine, 79000

PhD, Associate Professor

Department of Technical Mechanics and Machine Dynamics

Bogdan Gusar, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007

Adjunct

Department of Emergencies Recovery

Volodymyr Chernetskiy, Departement of the State Emergency Service Franka str., 6, Ivano-Frankivsk, Ukraine, 76018

PhD, Head of Departement

Olexandr-Zenoviy Mirus, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007

PhD, Head of Department

Department of Industrial and Occupational Safety

References

  1. Kovalyshyn, V. V., Mirus, O. L., Marych, V. M., Kovalyshyn, Vol. V., Lozynskyi, R. Ya. (2016). Problemy hasinnia mahniu ta yoho splaviv. Zbirnyk naukovykh prats LDU BZhD, 28, 58–63.
  2. Potężny pożar fabryki PolMag w Olszowej. Płonie 47 ton magnezu. Available at: https://nto.pl/potezny-pozar-fabryki-polmag-w-olszowej-plonie-47-ton-magnezu/ar/8962865
  3. Magnesium-Brand richtet bei Sonneberg Millionenschaden an. Available at: https://www.thueringer-allgemeine.de/web/zgt/leben/blaulicht/detail/-/specific/Magnesium-Brand-richtet-bei-Sonneberg-Millionenschaden-an-1529078490
  4. Marych, V., Kovalyshyn, V. V., Kyryliv, Y., Kovalchyk, V., Gusar, B., Koshelenko, V. (2018). Optimization of the dry chemical powders’ composition for class D1 fires extinguishing. Fire Safety, 32, 45–54. doi: https://doi.org/10.32447/20786662.32.2018.07
  5. Dovidnyk riatuvalnyka na vypadok vynyknennia nadzvychainykh sytuatsiy z nebezpechnymy khimichnymy rechovynamy (2012). Lviv: «Spolom», 377.
  6. Kovalyshyn, V. V., Marych, V. M., Kyryliv, Ya. B., Koshelenko, V. V., Mirus, O. L. (2016). Doslidzhennia khimichnykh rechovyn, yak skladnykiv vohnehasnykh poroshkiv dlia hasinnia lehkykh metaliv. Pozhezhna bezpeka LDU BZhD, 29, 46–56.
  7. GOST R 53280.5.-2009. Ustanovki pozharotusheniya avtomaticheskie. Ognetushashchie veshchestva (2009). No. 55. Moscow, 11.
  8. Gabrielyan, S. G. (2017). Primenenie argona dlya pozharotusheniya struzhki splavov magniya i titana, obrazuyushcheysya pri obrabotke na stankah s chislovym programmnym upravleniem i obrabatyvayushchih centrah. Pozharnaya bezopasnost', 4, 45–51.
  9. Balanyuk, V., Kovalishin, V., Kozyar, N. (2017). Prevention of n-geptan gas mixtures with the help of combined systems of shock waves and volume firefighting substances, 11 (40), 21–24. doi: https://doi.org/10.15587/2313-8416.2017.116177
  10. Rakowska, J., Radwan, K., Ślosorz, Z. (2014). Comparative Study of the Results of the Extinguishing Powder Grain Size Analysis Carried out by Different Methods. BiTP, 34 (2), 57–64. doi: https://doi.org/10.12845/bitp.34.2.2014.5
  11. Balaniuk, V. M., Koziar, N. M., Harasymiuk, O. I. (2016). The usage of gas and aerosol powder extinguishing mixtures for protection of incendiary mixtures. ScienceRise, 5 (2 (22)), 10–14. doi: https://doi.org/10.15587/2313-8416.2016.69333
  12. Kovalyshyn, V. V., Marych, V. M., Mirus, O. L., Lozynskyi, R. Ya., Husar, B. M., Bortnyk, M. Ya. (2018). Vplyv nasadok-zaspokoiuvachiv na efektyvnist hasinnia pozhezh klasiv D1. Visnyk LDU BZhD, 17, 93–101.
  13. Antonov, A. V., Stylyk, I. H. (2013). Metody vyprobuvan vohnehasnykh poroshkiv z vyznachennia yikh vohnehasnoi zdatnosti za klasom pozhezhi D. Visnyk UkrNDIPB, 2 (28), 242–248.
  14. CANNLC-S508-M90, Standard for the Raring and Fire Testing of Fire Extinguishers and Class D Extinguishing Media (1996). Underwriters’ Laboratories of Canada.
  15. Ständige Konferenz der Innenminister und – senatoren der Länder, Arbeitskreis V, Ausschuss für Feuerwehrangelegenheiten, Katastrophenschutz und zivile Verteidigung (2017). Evaluierung neuer Löschverfahren bei Metallbränden Heyrothsberge.
  16. Class D Powder Fire Extinguisher. Available at: https://www.youtube.com/watch?v=-sJ5TlaYPGs
  17. Class D fires – Chubb Pyromet Extinguisher. Available at: https://www.youtube.com/watch?v=CTFxCr_Oy94
  18. Dudareva, N. Yu., Zagayko, S. A. (2007). SolidWorks 2007 Naibolee polnoe rukovodstvo. Sankt-Peterburg: BHV-Peterburg, 1328.
  19. Alyamovskiy, A. F., Sobachkin, A. A., Odincov, E. V., Haritonovich, A. I., Ponomarev, N. B. (2008). SolidWorks 2007/2008. Komp'yuternoe modelirovanie v inzhenernoy praktike. Sankt-Peterburg: BHV-Peterburg, 1040.
  20. Ohurtsov, S. Yu., Stylyk, I. H., Antonov, A. V. (2013). Analiz metodiv vyprobuvan vohnehasnykh poroshkiv z vyznachennia yikh vohnehasnoi zdatnosti. Visnyk UkrNDIPB, 1 (27), 86–91.
  21. Kurepin, A. E., Karlik, V. M., Sichkorenko, L. A. (1997). Pat. No. 2119368 RF. Sposob tusheniya metallov. MPK: 6A 62D 1/00 A. No. 97105933/25; declareted: 11.04.1997; published: 27.09.1998.

Downloads

Published

2018-10-19

How to Cite

Kovalyshyn, V., Marych, V., Novitskyi, Y., Gusar, B., Chernetskiy, V., & Mirus, O.-Z. (2018). Improvement of a discharge nozzle damping attachment to suppress fires of class D. Eastern-European Journal of Enterprise Technologies, 5(5 (95), 68–76. https://doi.org/10.15587/1729-4061.2018.144874

Issue

Section

Applied physics