Improvement of a discharge nozzle damping attachment to suppress fires of class D
DOI:
https://doi.org/10.15587/1729-4061.2018.144874Keywords:
discharge nozzle damping attachment, fire of light metals, extinguishing the fire of magnesium, optimal pressure, optimal distanceAbstract
The software package COSMOSFloWorks has been used to study a discharge nozzle damping attachment. A procedure has been proposed to estimate the covering of surface with dimensions of 0.4×0.4 m by a fire-extinguishing powder. It was established that existing discharge nozzle damping attachments are not efficient because at extinguishing light metals they do not effectively reduce the speed of powder supply onto a flammable surface and fan the fire, not being able to cover the burning surface by a fire-extinguishing powder. After putting out the fire the surface that was covered with powder reveals the burnouts. We have modeled the optimal structural parameters for a discharge nozzle damping attachment in order to extinguish fires of class D in the form of a discharge nozzle damping attachment with an elliptical top and a parabolic reflector. It has been proven that a damping attachment with two working surfaces outperforms the previous damping attachment with a single working surface by 30 %. Given this, the fire-extinguishing powder covers the burning surface by a larger layer, preventing the fanning of chips from the surface of a burning metal, thereby shortening the duration of burning and improving the efficiency of a fire-extinguishing powder supply. Experimental study has confirmed that the use of a damping attachment that supplies a fire-extinguishing powder with two working surfaces in order to extinguish fires of class D increases the powder feed to a fire site, reaching above 90 %.
The diameter and the shape of the attachment have been determined. The attachment must acquire the form of a diffuser with a diameter of 16 mm.
Our development could be used when designing the stationary and portable fire extinguishing systems for light metals and alloys, including incendiary grenades under condition of proper selection of the powder. We have achieved positive results during field tests of the discharge nozzle damping attachment using a make-up fire to burn the shavings of magnesium alloysReferences
- Kovalyshyn, V. V., Mirus, O. L., Marych, V. M., Kovalyshyn, Vol. V., Lozynskyi, R. Ya. (2016). Problemy hasinnia mahniu ta yoho splaviv. Zbirnyk naukovykh prats LDU BZhD, 28, 58–63.
- Potężny pożar fabryki PolMag w Olszowej. Płonie 47 ton magnezu. Available at: https://nto.pl/potezny-pozar-fabryki-polmag-w-olszowej-plonie-47-ton-magnezu/ar/8962865
- Magnesium-Brand richtet bei Sonneberg Millionenschaden an. Available at: https://www.thueringer-allgemeine.de/web/zgt/leben/blaulicht/detail/-/specific/Magnesium-Brand-richtet-bei-Sonneberg-Millionenschaden-an-1529078490
- Marych, V., Kovalyshyn, V. V., Kyryliv, Y., Kovalchyk, V., Gusar, B., Koshelenko, V. (2018). Optimization of the dry chemical powders’ composition for class D1 fires extinguishing. Fire Safety, 32, 45–54. doi: https://doi.org/10.32447/20786662.32.2018.07
- Dovidnyk riatuvalnyka na vypadok vynyknennia nadzvychainykh sytuatsiy z nebezpechnymy khimichnymy rechovynamy (2012). Lviv: «Spolom», 377.
- Kovalyshyn, V. V., Marych, V. M., Kyryliv, Ya. B., Koshelenko, V. V., Mirus, O. L. (2016). Doslidzhennia khimichnykh rechovyn, yak skladnykiv vohnehasnykh poroshkiv dlia hasinnia lehkykh metaliv. Pozhezhna bezpeka LDU BZhD, 29, 46–56.
- GOST R 53280.5.-2009. Ustanovki pozharotusheniya avtomaticheskie. Ognetushashchie veshchestva (2009). No. 55. Moscow, 11.
- Gabrielyan, S. G. (2017). Primenenie argona dlya pozharotusheniya struzhki splavov magniya i titana, obrazuyushcheysya pri obrabotke na stankah s chislovym programmnym upravleniem i obrabatyvayushchih centrah. Pozharnaya bezopasnost', 4, 45–51.
- Balanyuk, V., Kovalishin, V., Kozyar, N. (2017). Prevention of n-geptan gas mixtures with the help of combined systems of shock waves and volume firefighting substances, 11 (40), 21–24. doi: https://doi.org/10.15587/2313-8416.2017.116177
- Rakowska, J., Radwan, K., Ślosorz, Z. (2014). Comparative Study of the Results of the Extinguishing Powder Grain Size Analysis Carried out by Different Methods. BiTP, 34 (2), 57–64. doi: https://doi.org/10.12845/bitp.34.2.2014.5
- Balaniuk, V. M., Koziar, N. M., Harasymiuk, O. I. (2016). The usage of gas and aerosol powder extinguishing mixtures for protection of incendiary mixtures. ScienceRise, 5 (2 (22)), 10–14. doi: https://doi.org/10.15587/2313-8416.2016.69333
- Kovalyshyn, V. V., Marych, V. M., Mirus, O. L., Lozynskyi, R. Ya., Husar, B. M., Bortnyk, M. Ya. (2018). Vplyv nasadok-zaspokoiuvachiv na efektyvnist hasinnia pozhezh klasiv D1. Visnyk LDU BZhD, 17, 93–101.
- Antonov, A. V., Stylyk, I. H. (2013). Metody vyprobuvan vohnehasnykh poroshkiv z vyznachennia yikh vohnehasnoi zdatnosti za klasom pozhezhi D. Visnyk UkrNDIPB, 2 (28), 242–248.
- CANNLC-S508-M90, Standard for the Raring and Fire Testing of Fire Extinguishers and Class D Extinguishing Media (1996). Underwriters’ Laboratories of Canada.
- Ständige Konferenz der Innenminister und – senatoren der Länder, Arbeitskreis V, Ausschuss für Feuerwehrangelegenheiten, Katastrophenschutz und zivile Verteidigung (2017). Evaluierung neuer Löschverfahren bei Metallbränden Heyrothsberge.
- Class D Powder Fire Extinguisher. Available at: https://www.youtube.com/watch?v=-sJ5TlaYPGs
- Class D fires – Chubb Pyromet Extinguisher. Available at: https://www.youtube.com/watch?v=CTFxCr_Oy94
- Dudareva, N. Yu., Zagayko, S. A. (2007). SolidWorks 2007 Naibolee polnoe rukovodstvo. Sankt-Peterburg: BHV-Peterburg, 1328.
- Alyamovskiy, A. F., Sobachkin, A. A., Odincov, E. V., Haritonovich, A. I., Ponomarev, N. B. (2008). SolidWorks 2007/2008. Komp'yuternoe modelirovanie v inzhenernoy praktike. Sankt-Peterburg: BHV-Peterburg, 1040.
- Ohurtsov, S. Yu., Stylyk, I. H., Antonov, A. V. (2013). Analiz metodiv vyprobuvan vohnehasnykh poroshkiv z vyznachennia yikh vohnehasnoi zdatnosti. Visnyk UkrNDIPB, 1 (27), 86–91.
- Kurepin, A. E., Karlik, V. M., Sichkorenko, L. A. (1997). Pat. No. 2119368 RF. Sposob tusheniya metallov. MPK: 6A 62D 1/00 A. No. 97105933/25; declareted: 11.04.1997; published: 27.09.1998.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Vasyl Kovalyshyn, Volodymyr Marych, Yaroslav Novitskyi, Bogdan Gusar, Volodymyr Chernetskiy, Olexandr-Zenoviy Mirus
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.