Studying the railroad track geometry deterioration as a result of an uneven subsidence of the ballast layer

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.154864

Keywords:

railway track, ballast layer, railway rolling stock, geometric unevenness of the track

Abstract

A method for calculating impairment of the track geometry under influence of dynamic loads in the course of passing the track unevenness by the rolling stock was developed. The method takes into consideration interrelated short-term processes of dynamic interaction and long-term processes of subsidence of the ballast layer in a mutual influence on each other. Mathematical model of dynamic interaction of the track in the form of a planar three-layer continual beam system with a two-mass discrete system corresponding to the rolling stock is the basis of the first part of the method. This model makes it possible to simulate dynamic loads from individual sleepers to the ballast when the rolling stock passes geometric unevennesses and the track elasticity unevennesses.

The second part of the method is based on the phenomenological mathematical model of accumulation of residual deformations formed using the results of laboratory studies of subsidence of individual sleepers in the ballast layer. Peculiarity of this model consists in taking into consideration not only uniform accumulation of residual subsidence from the passed tonnage but also presence of a plastic component of subsidence which depends on the maximum stresses in the history of ballast loading by each sleeper.

A new theoretical mechanism of development of the track unevenness was proposed. It takes into consideration not only residual subsidences of the ballast layer but also appearance of gaps under sleepers resulting in a local change of the track elasticity. This mechanism enables taking into consideration the ambiguous influence of subsidences with occurrence of gaps under the sleepers. Subsidence causes an increase in dynamic loads on the track and the ballast layer on the one hand and onset of the gap causes a decrease in the track rigidity and corresponding reduction of dynamic loads on the other hand.

Practical application of the developed method was demonstrated on an example of quantitative estimation of long-term uneven subsidences of the ballast layer when changing the sleeper diagram

Author Biographies

Olga Nabochenko, Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan I. Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD

Department of Rolling Stock and Track

Mykola Sysyn, Dresden University of Technology Hettnerstraße, 3/353, Dresden, Germany, D-01069

PhD, Associate Professor

Department of Planning and Design of Railway Infrastructure

Vitalii Kovalchuk, Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan I. Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD

Department of Rolling Stock and Track

Yuri Kovalchuk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Assistant

Department of Construction Industry

Andriy Pentsak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Construction Industry

Serhii Braichenko, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Senior Lecturer

Department of Construction Industry

References

  1. Sysyn, M., Gerber, U., Kovalchuk, V., Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 47 (3), 91–107. doi: https://doi.org/10.5604/01.3001.0012.6512
  2. Lichtberger, B. (2003). Handbuch Gleis: Unterbau, Oberbau, Instandhaltung, Wirtschaftlichkeit. Hamburg: Tetzlaff Verlag, 562.
  3. Lichtberger, B. (2005). Track Compendium. Eurailpress Tetzlafl-Hestra GmbH & Co. KG, 634.
  4. Gerber, U. (2010). Setzungsverhalten des Schotters. Železniční dopravní cesta. Sborník přednášek. Decin, 117–122.
  5. Gerber, U., Fengler, W. (2010). Setzungsverhalten des Schotters. Eisenbahntechnische Rundschau, 4, 170–175.
  6. Kovalchuk, V., Sysyn, M., Sobolevska, J., Nabochenko, O., Parneta, B., Pentsak, A. (2018). Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches. Eastern-European Journal of Enterprise Technologies, 4 (1 (94)), 27–36. doi: https://doi.org/10.15587/1729-4061.2018.139502
  7. Danilenko, E. I., Rybkin, V. V. (2006). Pravyla rozrakhunkiv zaliznychnoi koliyi na mitsnist i stiykist (TsP/0117). Zatverdzheno nakazom Ukrzaliznytsi vid 13.12.2004 r. No. 960 TsZ. Kyiv: Transport Ukrainy, 168.
  8. Esveld, C. (2001). Modern railway track. MRT-Production, 653.
  9. Mishra, M., Odelius, J., Thaduri, A., Nissen, A., Rantatalo, M. (2017). Particle filter-based prognostic approach for railway track geometry. Mechanical Systems and Signal Processing, 96, 226–238. doi: https://doi.org/10.1016/j.ymssp.2017.04.010
  10. Fischer, S. (2017). Breakage test of railway ballast materials with new laboratory method. Periodica Polytechnica Civil Engineering, 61 (4), 794‒802. doi: https://doi.org/10.3311/ppci.8549
  11. Németh, A., Fischer, S. (2018). Investigation of glued insulated rail joints with special fiber-glass reinforced synthetic fishplates using in continuously welded tracks. Pollack Periodica, 13 (2), 77–86. doi: https://doi.org/10.1556/606.2018.13.2.8
  12. Sysyn, M. P., Kovalchuk, V. V Jiang, D. (2018). Performance study of the inertial monitoring method for railway turnouts. International Journal of Rail Transportation, 1–14. doi: https://doi.org/10.1080/23248378.2018.1514282
  13. Nielsen, J. C. O., Li, X. (2018). Railway track geometry degradation due to differential settlement of ballast/subgrade – Numerical prediction by an iterative procedure. Journal of Sound and Vibration, 412, 441–456. doi: https://doi.org/10.1016/j.jsv.2017.10.005
  14. Holtzendorff, K. (2003). Untersuchung des Setzungsverhaltens von Bahnschotter und der Hohllagenentwicklung auf Schotterfahrbahnen. Dissertation. Technische Universität Berlin. Berlin, 130.
  15. Lysyuk, V. S., Sazonov, V. N., Bashkatova, L. V. (2011). Prochnyy i nadezhnyy zheleznodorozhnyy put'. Moscow: IKC «Akademkniga», 589.
  16. Nabochenko, O., Sysyn, M., Gerber, U., Rybkin, V. (2011). Die Instandhaltung der Bettung. Železniční Dopravní Cesta. Děčín, 23–32.
  17. Salajka, V., Smolka, M., Kala, J., Plášek, O. (2017). Dynamical response of railway switches and crossings. MATEC Web of Conferences, 107, 00018. doi: https://doi.org/10.1051/matecconf/201710700018
  18. Kovalchuk, V., Kovalchuk, Y., Sysyn, M., Stankevych, V., Petrenko, O. (2018). Estimation of carrying capacity of metallic corrugated structures of the type Multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 1 (1 (91)), 18–26. doi: https://doi.org/10.15587/1729-4061.2018.123002
  19. Kassa, E. (2007). Dynamic train-turnout interaction: mathematical modelling, numerical simulation and field testing. Chalmers University of Technology, Göteborg.
  20. Myamlin, S. V. (2002). Modelirovanie dinamiki rel'sovyh ekipazhey. Dnepropetrovsk: Novaya ideologiya, 240.
  21. Met'yuz, D. G., Fink, K. D. (2001). Chislennye metody. Ispol'zovanie MATLAB. Moscow: Izdatel'skiy dom "Vil'yams", 720.

Downloads

Published

2019-01-22

How to Cite

Nabochenko, O., Sysyn, M., Kovalchuk, V., Kovalchuk, Y., Pentsak, A., & Braichenko, S. (2019). Studying the railroad track geometry deterioration as a result of an uneven subsidence of the ballast layer. Eastern-European Journal of Enterprise Technologies, 1(7 (97), 50–59. https://doi.org/10.15587/1729-4061.2019.154864

Issue

Section

Applied mechanics