Studying the railroad track geometry deterioration as a result of an uneven subsidence of the ballast layer
DOI:
https://doi.org/10.15587/1729-4061.2019.154864Keywords:
railway track, ballast layer, railway rolling stock, geometric unevenness of the trackAbstract
A method for calculating impairment of the track geometry under influence of dynamic loads in the course of passing the track unevenness by the rolling stock was developed. The method takes into consideration interrelated short-term processes of dynamic interaction and long-term processes of subsidence of the ballast layer in a mutual influence on each other. Mathematical model of dynamic interaction of the track in the form of a planar three-layer continual beam system with a two-mass discrete system corresponding to the rolling stock is the basis of the first part of the method. This model makes it possible to simulate dynamic loads from individual sleepers to the ballast when the rolling stock passes geometric unevennesses and the track elasticity unevennesses.
The second part of the method is based on the phenomenological mathematical model of accumulation of residual deformations formed using the results of laboratory studies of subsidence of individual sleepers in the ballast layer. Peculiarity of this model consists in taking into consideration not only uniform accumulation of residual subsidence from the passed tonnage but also presence of a plastic component of subsidence which depends on the maximum stresses in the history of ballast loading by each sleeper.
A new theoretical mechanism of development of the track unevenness was proposed. It takes into consideration not only residual subsidences of the ballast layer but also appearance of gaps under sleepers resulting in a local change of the track elasticity. This mechanism enables taking into consideration the ambiguous influence of subsidences with occurrence of gaps under the sleepers. Subsidence causes an increase in dynamic loads on the track and the ballast layer on the one hand and onset of the gap causes a decrease in the track rigidity and corresponding reduction of dynamic loads on the other hand.
Practical application of the developed method was demonstrated on an example of quantitative estimation of long-term uneven subsidences of the ballast layer when changing the sleeper diagramReferences
- Sysyn, M., Gerber, U., Kovalchuk, V., Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 47 (3), 91–107. doi: https://doi.org/10.5604/01.3001.0012.6512
- Lichtberger, B. (2003). Handbuch Gleis: Unterbau, Oberbau, Instandhaltung, Wirtschaftlichkeit. Hamburg: Tetzlaff Verlag, 562.
- Lichtberger, B. (2005). Track Compendium. Eurailpress Tetzlafl-Hestra GmbH & Co. KG, 634.
- Gerber, U. (2010). Setzungsverhalten des Schotters. Železniční dopravní cesta. Sborník přednášek. Decin, 117–122.
- Gerber, U., Fengler, W. (2010). Setzungsverhalten des Schotters. Eisenbahntechnische Rundschau, 4, 170–175.
- Kovalchuk, V., Sysyn, M., Sobolevska, J., Nabochenko, O., Parneta, B., Pentsak, A. (2018). Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches. Eastern-European Journal of Enterprise Technologies, 4 (1 (94)), 27–36. doi: https://doi.org/10.15587/1729-4061.2018.139502
- Danilenko, E. I., Rybkin, V. V. (2006). Pravyla rozrakhunkiv zaliznychnoi koliyi na mitsnist i stiykist (TsP/0117). Zatverdzheno nakazom Ukrzaliznytsi vid 13.12.2004 r. No. 960 TsZ. Kyiv: Transport Ukrainy, 168.
- Esveld, C. (2001). Modern railway track. MRT-Production, 653.
- Mishra, M., Odelius, J., Thaduri, A., Nissen, A., Rantatalo, M. (2017). Particle filter-based prognostic approach for railway track geometry. Mechanical Systems and Signal Processing, 96, 226–238. doi: https://doi.org/10.1016/j.ymssp.2017.04.010
- Fischer, S. (2017). Breakage test of railway ballast materials with new laboratory method. Periodica Polytechnica Civil Engineering, 61 (4), 794‒802. doi: https://doi.org/10.3311/ppci.8549
- Németh, A., Fischer, S. (2018). Investigation of glued insulated rail joints with special fiber-glass reinforced synthetic fishplates using in continuously welded tracks. Pollack Periodica, 13 (2), 77–86. doi: https://doi.org/10.1556/606.2018.13.2.8
- Sysyn, M. P., Kovalchuk, V. V Jiang, D. (2018). Performance study of the inertial monitoring method for railway turnouts. International Journal of Rail Transportation, 1–14. doi: https://doi.org/10.1080/23248378.2018.1514282
- Nielsen, J. C. O., Li, X. (2018). Railway track geometry degradation due to differential settlement of ballast/subgrade – Numerical prediction by an iterative procedure. Journal of Sound and Vibration, 412, 441–456. doi: https://doi.org/10.1016/j.jsv.2017.10.005
- Holtzendorff, K. (2003). Untersuchung des Setzungsverhaltens von Bahnschotter und der Hohllagenentwicklung auf Schotterfahrbahnen. Dissertation. Technische Universität Berlin. Berlin, 130.
- Lysyuk, V. S., Sazonov, V. N., Bashkatova, L. V. (2011). Prochnyy i nadezhnyy zheleznodorozhnyy put'. Moscow: IKC «Akademkniga», 589.
- Nabochenko, O., Sysyn, M., Gerber, U., Rybkin, V. (2011). Die Instandhaltung der Bettung. Železniční Dopravní Cesta. Děčín, 23–32.
- Salajka, V., Smolka, M., Kala, J., Plášek, O. (2017). Dynamical response of railway switches and crossings. MATEC Web of Conferences, 107, 00018. doi: https://doi.org/10.1051/matecconf/201710700018
- Kovalchuk, V., Kovalchuk, Y., Sysyn, M., Stankevych, V., Petrenko, O. (2018). Estimation of carrying capacity of metallic corrugated structures of the type Multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 1 (1 (91)), 18–26. doi: https://doi.org/10.15587/1729-4061.2018.123002
- Kassa, E. (2007). Dynamic train-turnout interaction: mathematical modelling, numerical simulation and field testing. Chalmers University of Technology, Göteborg.
- Myamlin, S. V. (2002). Modelirovanie dinamiki rel'sovyh ekipazhey. Dnepropetrovsk: Novaya ideologiya, 240.
- Met'yuz, D. G., Fink, K. D. (2001). Chislennye metody. Ispol'zovanie MATLAB. Moscow: Izdatel'skiy dom "Vil'yams", 720.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Olga Nabochenko, Mykola Sysyn, Vitalii Kovalchuk, Yuri Kovalchuk, Andriy Pentsak, Serhii Braichenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.