Modeling of the transport and production complex in the growing of agricultural crops, taking into account the aviation component

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.198742

Keywords:

technological process, No-till technology, subsystem, set of operations, types of resources, process chart, aviation equipment, ground equipment

Abstract

Studies of the transport and technological process of growing crops revealed that it is a complex dynamic system. It is proved that the complexity of this system consists in the presence of a large number of heterogeneous subsystems, including transport, which is an important component for growing crops. Due to the system approach to the study of transport support of the crop growing process, it became possible to identify functional features of using ground and aviation vehicles. The properties of each stage of the growing process and involvement of certain types of vehicles are determined.

The scheme of transport support of the crop growing process is developed and the influence of the aviation component at certain stages in the introduction of resource-saving No-till technology is determined.

Experimental studies showed that the use of aviation transport contributes to the introduction of resource-saving No-till technology by minimizing the mechanical processing of sown areas, which reduces the anthropogenic load on the soil.

The developed mathematical model for analyzing the use of the transport and production complex in growing crops allows making a rational choice of ground and aviation vehicles, depending on the parameters of technologies, types of crops.

Thus, there is reason to argue that it is possible to make timely and reasonable management decisions in the organization and management of agricultural production in order to maximize profits

Author Biographies

Svitlana Pron, National Aviation University Liubomyra Huzara ave., 1, Kyiv, Ukraine, 03058

PhD

Department of Organization of Aviation Works and Services

Olena Soloviova, National Aviation University Liubomyra Huzara ave., 1, Kyiv, Ukraine, 03058

PhD, Associate Professor

Department of Organization of Aviation Works and Services

Iryna Herasymenko, National Aviation University Liubomyra Huzara ave., 1, Kyiv, Ukraine, 03058

PhD, Associate Professor

Department of Organization of Aviation Works and Services

Iryna Borets, National Aviation University Liubomyra Huzara ave., 1, Kyiv, Ukraine, 03058

PhD, Associate Professor

Department of Air Transport Organization

References

  1. Pron, S. V. (2016). Osnovy formuvannia intehrovanoi transportnoi systemy vyroshchuvannia zernovykh kultur. Avtomobilni dorohy i dorozhnie budivnytstvo, 96, 192–199.
  2. Vasylkovska, K. V., Leshchenko, S. M., Vasylkovskyi, O. M., Petrenko, D. I. (2016). Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH, 50 (3), 13–20.
  3. Popovych, P. V., Lyashuk, O. L., Murovanyi, I. S., Dzyura, V. O., Shevchuk, O. S., Myndyuk, V. D. (2016). The service life evaluation of fertilizer spreaders undercarriages. INMATEH, 50 (3), 39–46.
  4. Mostypan, M. I., Vasylkovska, K. V., Andriyenko, O. O., Reznichenko, V. P. (2017). Modern aspects of tilled crops productivity forecasting. INMATEH, 53 (3), 35–40.
  5. Vasylkovska, K. V., Vasylkovskyi, O. M., Sviren, M. O., Petrenko, D. I. et. al. (2019). Determining the parameters of the device for inertial removal of excess seed. INMATEH, 57 (1), 135–140. doi: https://doi.org/10.35633/inmateh_57_14
  6. Krivutsa, Z. F. (2010). Ispol'zovanie matematicheskih modeley dlya optimizatsii raboty avtomobil'nogo transporta. Mehanizatsiya i elektrifikatsiya tehnologicheskih protsessov v sel'skohozyaystvennom proizvodstve, 17, 136.
  7. Sharifov, F. A., Yun, H. M., Kandyba, H. Yu. (2014). Optimal route of aircraft for agroaviation works. Science-based technologies, 23 (3), 319–325. doi: https://doi.org/10.18372/2310-5461.23.7415
  8. Marintseva, K., Yun, G., Kachur, S. (2015). Resource allocation improvement in the tasks of airport ground handling operations. Aviation, 19 (1), 7–13. doi: https://doi.org/10.3846/16487788.2015.1015291
  9. Soloviova, O. O., Herasymenko, I. M., Rovnenko, M. M. (2011). Ekonomichna efektyvnist vykorystannia aviatsiyi v silskomu hospodarstvi v porivnianni z nazemnoiu tekhnikoiu. Visnyk Khmelnytskoho natsionalnoho universytetu. Ekonomichni nauky, 1 (171), 194–198.
  10. Enaleeva-Bandura, I. M., Danilov, A. G., Nikonchuk, A. V., Davydova, A. L. (2017). A dynamic model of transport-technological process of transporting wood raw material in a multiproduct setting. Hvoynye boreal'noy zony, 1-2, 84–87.
  11. Pron, S. V., Vysotska, I. I. (2016). Theoretical aspects of the concept transport system of agricultural works. Molodyi vchenyi, 4, 252–256.
  12. Makhmud el Asskar, Bykova, O. Ye. (2009). Vplyv tekhnolohiyi No-till u zonakh nedostatnoho zvolozhennia na vlastyvosti gruntiv i produktyvnist kultur. Visnyk ahrarnoi nauky, 2, 25–28.
  13. Huzhvenko, S. M. (2016). Osoblyvosti planuvannia pid chas vykorystannia innovatsiynykh system tekhnolohiy u vyrobnychiy diyalnosti ahrarnoho pidpryiemstva. Ekonomika i suspilstvo, 7, 260–265. Available at: http://economyandsociety.in.ua/journal/7_ukr/44.pdf
  14. Pidsumky diyalnosti aviatsiynoi haluzi Ukrainy. Available at: http://avia.gov.ua/
  15. Statystychni dani v haluzi aviatransportu. Available at: https://mtu.gov.ua/content/statistichni-dani-v-galuzi-aviatransportu.html
  16. Hess, L. J. T., Hinckley, E.-L. S., Robertson, G. P., Matson, P. A. (2020). Rainfall intensification increases nitrate leaching from tilled but not no-till cropping systems in the U.S. Midwest. Agriculture, Ecosystems & Environment, 290, 106747. doi: https://doi.org/10.1016/j.agee.2019.106747
  17. Wang, J., Zou, J. (2020). No-till increases soil denitrification via its positive effects on the activity and abundance of the denitrifying community. Soil Biology and Biochemistry, 142, 107706. doi: https://doi.org/10.1016/j.soilbio.2020.107706
  18. Ferreira, C. dos R., Silva Neto, E. C. da, Pereira, M. G., Guedes, J. do N., Rosset, J. S., Anjos, L. H. C. dos. (2020). Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil and Tillage Research, 198, 104533. doi: https://doi.org/10.1016/j.still.2019.104533
  19. Pron, S. V., Vysotska, I. I., Soloviova, O. O. (2017). Modeliuvannia vykonannia ahrarnykh robit z urakhuvanniam transportnoi skladovoi. Avtomobilni dorohy i dorozhnie budivnytstvo, 100, 331–340.
  20. Sait korporatsiyi «Ahro-Soiuz». Available at: http://www.agrosoyuz.ua/products/tech-conf-educ/plant-growing
  21. American Optimal Decisions. Available at: http://www.aorda.com

Downloads

Published

2020-04-30

How to Cite

Pron, S., Soloviova, O., Herasymenko, I., & Borets, I. (2020). Modeling of the transport and production complex in the growing of agricultural crops, taking into account the aviation component. Eastern-European Journal of Enterprise Technologies, 2(3 (104), 30–39. https://doi.org/10.15587/1729-4061.2020.198742

Issue

Section

Control processes