Obtaining glucose-based 5-hydroxymethylfurfural on large-pore zeolites

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.226575

Keywords:

large-pore zeolites, polycationic forms, glucose dehydration, 5-hydroxymethylfurfural, yield, glucose conversion

Abstract

Obtaining such substances-platforms as, in particular, 5-hydroxymethylfurfural is one of the areas most actively investigated at present. They can act as raw materials for the further production of a new generation of biopolymers, fuels, pharmaceuticals, dietary supplements, and other chemicals. This paper reports the catalysts, synthesized by using methods of ion exchange and impregnation, based on the large-pore zeolites X, Y, and M, which contain the cations of rubidium, lanthanum, calcium, and ammonium. It was found that the zeolites' specific surface was 400‒500 m2/g; the selected synthesis conditions did not cause noticeable destruction of the microporous structure. In the presence of the synthesized catalysts, glucose dehydration in the aqueous medium and in dimethyl sulfoxide was carried out at 150–160 °C. The higher efficiency of polycationic forms of zeolites in a non-aqueous medium has been established. In the latter case, a 40 % yield of 5-hydroxymethylfurfural was achieved at an almost complete glucose conversion. Deactivated catalyst samples were investigated using the methods of infrared spectroscopy and differential thermal analysis/thermogravimetry. It was found that the catalyst accumulates fewer oligomerization process by-products when the reaction is implemented in dimethyl sulfoxide. The loss of mass by the samples deactivated in an aqueous medium is 30‒33 %, while in dimethyl sulfoxide – up to 24 %. The obtained results are important for practical application as the only volatile conversion product is 5-hydroxymethylfurfural with a yield of up to 40 %. That is acceptable for the possible implementation of a one-stage process of obtaining 5-hydroxymethylfurfural in the future

Author Biographies

Lyubov Patrylak, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Doctor of Chemical Sciences, Professor

Department of Technology of Inorganic Substances, Water Treatment and General Chemical Technology

Serhii Konovalov, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine

PhD

Department of Catalytic Synthesis

Olexandra Pertko, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine

PhD

Department of Catalytic Synthesis

Anzhela Yakovenko, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine

PhD

Department of Catalytic Synthesis

Volodymyr Povazhnyi, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine

PhD

Department of Catalytic Synthesis

Oleksandr Melnychuk, LLC "Fluid Management Systems"

PhD

References

  1. Esteban, J., Yustos, P., Ladero, M. (2018). Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Overview. Catalysts, 8 (12), 637. doi: https://doi.org/10.3390/catal8120637
  2. Chernyshev, V. M., Kravchenko, O. A., Ananikov, V. P. (2017). Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russian Chemical Reviews, 86 (5), 357–387. doi: https://doi.org/10.1070/rcr4700
  3. Teong, S. P., Yi, G., Zhang, Y. (2014). Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 16 (4), 2015. doi: https://doi.org/10.1039/c3gc42018c
  4. Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113 (3), 1499–1597. doi: https://doi.org/10.1021/cr300182k
  5. Bodachivskyi, I., Kuzhiumparambil, U., Williams, D. B. G. (2019). High Yielding Acid‐Catalysed Hydrolysis of Cellulosic Polysaccharides and Native Biomass into Low Molecular Weight Sugars in Mixed Ionic Liquid Systems. ChemistryOpen, 8 (10), 1316–1324. doi: https://doi.org/10.1002/open.201900283
  6. Ertl, G., Knozinger, H., Schuth, F., Weitkamp, J. (Eds.) (2008). Handbook of Heterogeneous Catalysis. Wiley-VCH. doi: https://doi.org/10.1002/9783527610044
  7. Weikamp, J., Pupple, L. (Eds.) (1999). Catalysis and Zeolites. Fundamentals and Applications. Springer, 564. doi: https://doi.org/10.1007/978-3-662-03764-5
  8. Breck, D. W. (1974). Zeolite Molecular Sieves: Structure, Chemistry, and Use. John Wiley and Sons, 771.
  9. Saravanamurugan, S., Paniagua, M., Melero, J. A., Riisager, A. (2013). Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. Journal of the American Chemical Society, 135 (14), 5246–5249. doi: https://doi.org/10.1021/ja400097f
  10. Saravanamurugan, S., Riisager, A., Taarning, E., Meier, S. (2016). Combined Function of Brønsted and Lewis Acidity in the Zeolite-Catalyzed Isomerization of Glucose to Fructose in Alcohols. ChemCatChem, 8 (19), 3107–3111. doi: https://doi.org/10.1002/cctc.201600783
  11. Pienkoß, F., Ochoa-Hernández, C., Theyssen, N., Leitner, W. (2018). Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustainable Chemistry & Engineering, 6 (7), 8782–8789. doi: https://doi.org/10.1021/acssuschemeng.8b01151
  12. Levytska, S. I. (2017). Investigation of glucose isomerization into fructose on MgO-ZrO2 catalyst in flow mode. Catalysis and petrochemistry, 26, 46–52.
  13. Wei, W., Wu, S. (2018). Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst. Fuel, 225, 311–321. doi: https://doi.org/10.1016/j.fuel.2018.03.120
  14. Cui, M., Wu, Z., Huang, R., Qi, W., Su, R., He, Z. (2018). Integrating chromium-based ceramic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Renewable Energy, 125, 327–333. doi: https://doi.org/10.1016/j.renene.2018.02.085
  15. Parveen, F., Upadhyayula, S. (2017). Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities - A mechanistic and experimental study. Fuel Processing Technology, 162, 30–36. doi: https://doi.org/10.1016/j.fuproc.2017.03.021
  16. Tosi, I., Riisager, A., Taarning, E., Jensen, P. R., Meier, S. (2018). Kinetic analysis of hexose conversion to methyl lactate by Sn-Beta: effects of substrate masking and of water. Catalysis Science & Technology, 8 (8), 2137–2145. doi: https://doi.org/10.1039/c8cy00335a
  17. Puértolas, B., Imtiaz, Q., Müller, C. R., Pérez‐Ramírez, J. (2016). Platform Chemicals via Zeolite‐Catalyzed Fast Pyrolysis of Glucose. ChemCatChem, 9 (9), 1579–1582. doi: https://doi.org/10.1002/cctc.201601052
  18. Patrilyak, K. I., Patrilyak, L. K., Voloshina, Y. G., Manza, I. A., Konovalov, S. V. (2011). Distribution of the products from the alkylation of isobutane with butenes at a zeolite catalyst and the reaction mechanism. Theoretical and Experimental Chemistry, 47 (4), 205–214. doi: https://doi.org/10.1007/s11237-011-9205-y
  19. Patrylak, K. I., Patrylak, L. K., Repetskyi, I. A. (2013). Mechanisms of alkylation of isobutane by butenes and H/D exchange in isobutane molecules on acid zeolites. Theoretical and Experimental Chemistry, 49 (3), 143–157. doi: https://doi.org/10.1007/s11237-013-9308-8
  20. Patrylak, L., Krylova, M., Pertko, O., Voloshyna, Y. et. al. (2020). n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite. Chemistry and Chemical Technology, 14 (2), 234–238. doi: https://doi.org/10.23939/chcht14.02.234
  21. Patrilyak, L. K., Ionin, V. A., Voloshina, Y. G. (2005). Correlation of Catalytic Efficiency of Faujasites in the Alkylation of Isobutane by Butenes and their IR Spectral Characteristics. Theoretical and Experimental Chemistry, 41 (3), 192–197. doi: https://doi.org/10.1007/s11237-005-0039-3
  22. Patrylak, L. K., Povazhnyi, V. A., Konovalov, S. V., Pertko, О. P., Yakovenko, A. V. (2020). Thermogravimetric study of nickel-containing zeolites deactivated in glucose conversion. Catalysis and petrochemistry, 30, 90–96. doi: https://doi.org/10.15407/kataliz2020.30.090
  23. Ro, Y., Gim, M. Y., Lee, J. W., Lee, E. J., Song, I. K. (2018). Alkylation of Isobutane/2-Butene Over Modified FAU-Type Zeolites. Journal of Nanoscience and Nanotechnology, 18 (9), 6547–6551. doi: https://doi.org/10.1166/jnn.2018.15665
  24. Patrylak, L. K. (1999). Chemisorption of Lewis Bases on Zeolites – A New Interpretation of the Results. Adsorption Science & Technology, 17 (2), 115–123. doi: https://doi.org/10.1177/026361749901700205
  25. Mikuła, A., Król, M., Mozgawa, W., Koleżyński, A. (2018). New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 195, 62–67. doi: https://doi.org/10.1016/j.saa.2018.01.044
  26. Wojciechowska, K. M., Król, M., Bajda, T., Mozgawa, W. (2019). Sorption of Heavy Metal Cations on Mesoporous ZSM-5 and Mordenite Zeolites. Materials, 12 (19), 3271. doi: https://doi.org/10.3390/ma12193271
  27. Erdogdu, Y., Sertbakan, T. R., Güllüoğlu, M. T., Yurdakul, Ş., Güvenir, A. (2018). FT-IR and Raman Spectroscopy and Computation of 5-Methylfurfural. Journal of Applied Spectroscopy, 85 (3), 517–525. doi: https://doi.org/10.1007/s10812-018-0682-9
  28. Kul’pina, Y. N., Prokof’ev, V. Y., Gordina, N. E., Khmylova, O. E., Petukhova, N. V., Gazakhova, S. I. (2017). Use of IR spectroscopy for study of structure of low-modulus zeolites. Izvestiya Vysshikh Uchebnykh Zavedeniy Khimiya Khimicheskaya Tekhnologiya, 60 (5), 44–50. doi: https://doi.org/10.6060/tcct.2017605.5405
  29. Maruani, V., Narayanin-Richenapin, S., Framery, E., Andrioletti, B. (2018). Acidic Hydrothermal Dehydration of d-Glucose into Humins: Identification and Characterization of Intermediates. ACS Sustainable Chemistry & Engineering, 6 (10), 13487–13493. doi: https://doi.org/10.1021/acssuschemeng.8b03479
  30. Tsilomelekis, G., Orella, M. J., Lin, Z., Cheng, Z., Zheng, W., Nikolakis, V., Vlachos, D. G. (2016). Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chemistry, 18 (7), 1983–1993. doi: https://doi.org/10.1039/c5gc01938a

Downloads

Published

2021-04-12

How to Cite

Patrylak, L., Konovalov, S., Pertko, O., Yakovenko, A., Povazhnyi, V., & Melnychuk, O. (2021). Obtaining glucose-based 5-hydroxymethylfurfural on large-pore zeolites . Eastern-European Journal of Enterprise Technologies, 2(6 (110), 38–44. https://doi.org/10.15587/1729-4061.2021.226575

Issue

Section

Technology organic and inorganic substances