# Devising a method to improve the accuracy of maintaining the pre-set temperature and humidity conditions at a vegetable storage facility under a food storing mode

## Authors

• Petro Kachanov National Technical University «Kharkiv Polytechnic Institute» , Ukraine
• Oleh Yevseienko National Technical University «Kharkiv Polytechnic Institute» , Ukraine
• Nataliia Yevsina National Technical University «Kharkiv Polytechnic Institute» , Ukraine

## Keywords:

control system, vegetable storage facility, temperature stabilization, microclimate, mathematical model, vegetable storage

## Abstract

A vegetable storage facility is an energy-consuming object with distributed parameters. The quality of product storage depends on the microclimate in the vegetable storage facility: current temperature, humidity, and carbon dioxide level. Existing temperature controllers in a vegetable storage facility use a two-position law of control, which leads to the consumption of excess energy and product spoilage.

The purpose of the study is to improve the work of the controller in the process of product storage at the storage phase due to closing the two-position controller through feedback in the form of a first-order aperiodic link.

To achieve the goal, the procedure for calculating the transfer function of a control object through the equation of thermal balance was used. This procedure made it possible to take into consideration the parameters of a vegetable storage facility: the area and the type of thermal insulation material of floorings, the weight, and the type of a stored product, as well as thermal energy supplied to the vegetable storage facility.

Based on the heat balance equation, the nature of the operation of controlling elements, transfer functions of a vegetable storage facility without a product, and the vegetable storage facility filled with a product, were calculated. The heat model of a vegetable storage facility was constructed in the MATLAB Simulink environment (USA) to check the algorithms of the temperature field control.

The product storage for 180 days with changes in the daily temperature of outdoor air from minus 8 °C to plus 2 °C and changes in humidity from 50 % to 100 % was modeled.

According to the results of modeling, it is possible to conclude that the addition of an aperiodic link to the feedback of the two-position controller will enable taking into consideration the inertia of a control object. This allows decreasing the maximum error in control of self-oscillations to 0.15 °C and decreasing the total operation time of controlling elements by 13 %

## Author Biographies

### Petro Kachanov, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor

Department of Automation and Control in Technical Systems

### Oleh Yevseienko, National Technical University «Kharkiv Polytechnic Institute»

PhD, Senior Lecturer

Department of Automation and Control in Technical Systems

### Nataliia Yevsina, National Technical University «Kharkiv Polytechnic Institute»

PhD, Associate Professor

Department of Automation and Control in Technical Systems

## References

1. Admaev, A. I. (2018). Sistema kontrolya i upravleniya mikroklimatom v ovoschehranilische. Informatsionnye tehnologii i upravlenie. Materialy 54-y nauch. konf. aspirantov, magistrantov i studentov. Minsk, 24–25. Available at: https://libeldoc.bsuir.by/bitstream/123456789/32801/1/Admayev_Sistema.pdf
2. Akdemir, S., Bartzanas, T. (2015). Numerical Modelling and Experimental Validation of a Cold Store Ambient Factors. Journal of agricultural sciences, 21, 606–619. doi: https://doi.org/10.1501/tarimbil_0000001361
3. Nemenuschaya, L. A., Stepanischeva, N. M., Solomatin, D. M. (2009). Sovremennye tehnologii hraneniya i pererabotki plodoovoschnoy produktsii. Moscow: FGNU «Rosinformagroteh», 172. Available at: https://rosinformagrotech.ru/data/itpk/kartofel-i-ovoshchi/send/18-kartofel-i-ovoshchi/469-sovremennye-tekhnologii-khraneniya-i-pererabotki-plodoovoshchnoj-produktsii
4. Meneghetti, C. R., Tizzei, A., Cappelli, N. L., Umezu, C. K., Bezzon, G. (2013). A Mathematical model for the cold storage of agricultural products. Revista Ciência Agronômica, 44 (2), 286–293. doi: https://doi.org/10.1590/s1806-66902013000200010
5. Malanchuk, Y., Khrystyuk, A., Sych, V. (2020). Problems of automation of fresh fruits and vegetables storage processes. Modeling, Control and Information Technologies, 4, 92–95. doi: https://doi.org/10.31713/mcit.2020.34
6. Maltsev, S. V., Kluev, S. I., Pshechenkov, K. A. (2017). The microclimate control system in modern potato storage facilities. Zaschita kartofelya, 2, 12–17. Available at: http://www.kartofel.org/zakart/2_2017.pdf
7. Yermilova, N., Kyslytsia, S., Tarasiuk, R. (2019). Development of automated control system for equipment of a vegetable storage facility based on neuro-fuzzy systems. Control, Navigation and Communication Systems, 1 (53), 50–54. doi: https://doi.org/10.26906/sunz.2019.1.050
8. Tolsma. Available at: https://tolsma.com.ua/
9. Mooij Agro. Available at: https://www.mooij-agro.com/en/
10. Lekomtsev, P. L., Dresviannikova, E. V., Niazov, A. M., Orlov, S. V. (2017). Mathematical modeling of refrigeration using vortex tubes in vegetable stores. Engineering Journal of Don, 4. Available at: http://www.ivdon.ru/uploads/article/pdf/IVD_109_Lekomcev.pdf_24bf077381.pdf
11. Timoshenko, V. A., Sutulo, A. V., Dovgan', N. B. (2017). Metody viyavleniya porokov kartofelya pri razlichnyh temperaturnyh rezhimah hraneniya i otsenka ego kachestva. The Electronic Scientific Journal, 5-1, 16–19. Available at: http://co2b.ru/docs/enj.2017.05.01.pdf
12. Uzakov, G. N. (2010). Snizhenie zatrat energii v teplohladosnabzhenii kombinirovannogo sooruzheniya «ovoschehranilische-gelioteplitsa» s ispol'zovaniem teplovyh nasosov. Molodoy ucheniy, 1 (11), 73–78. Available at: https://moluch.ru/archive/22/2218/
13. Alhamdan, A., Alsadon, A., Wahb-Allah, M. A., Nagar, M. E. (2011). Influence of Storage Conditions on Seed Quality and Longevity of Four Vegetable Crops. American-Eurasian Journal of Agricultural & Environmental Sciences, 11 (3), 353–359. Available at: https://www.idosi.org/aejaes/jaes11(3)11/8.pdf
14. Tervonen, J. (2018). Experiment of the quality control of vegetable storage based on the Internet-of-Things. Procedia Computer Science, 130, 440–447. doi: https://doi.org/10.1016/j.procs.2018.04.065
15. Zhukov, A. D., Ter-Zakaryan, K. A., Tuchaev, D. U., Petrovsky, E. S. (2018). Energy-efficient insulation of food storage rooms and vegetable stores. International Agricultural Journal, 1, 65–67. doi: https://doi.org/10.24411/2587-6740-2018-11015
16. Iacomi, C., Roșca, I., Madjar, R., Iacomi, B., Popescu, V., Vărzaru, G., Sfetcu, C. (2014). Automation and computer-based technology for small vegetable farm holders. Scientific Papers. Series A. Agronomy, 57, 415–420. Available at: http://agronomyjournal.usamv.ro/pdf/2014/art74.pdf
17. Kachanov, P., Yevseienko, O. (2017). Modeling of daily temperature mode in premises using a predictive controller. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 33–41. doi: https://doi.org/10.15587/1729-4061.2017.108574
18. Kun, T., Peng, X., Hong-kun, H. (2015). The application of Self-adaptive Fuzzy PID control the evaporator superheat. International Journal of Research in Engineering and Science (IJRES), 3 (42), 64–71. Available at: https://1library.net/document/ydv4xkjy-application-self-adaptive-fuzzy-pid-control-evaporator-superheat.html
19. Grudinin, V. S., Khoroshavin, V. S., Zotov, A. V., Grudinin, S. V. (2019). Adaptive Iterative Control of Temperature in Greenhouse. Engineering Technologies and Systems, 29 (3), 383–395. doi: https://doi.org/10.15507/2658-4123.029.201903.383-395
20. Tizzei, A., Meneghetti, C. R., Cappelli, N. L., Umezu, C. K. (2011). System for studies of control strategies applied in the refrigerated chambers. Engenharia Agrícola, 31 (5), 868–878. doi: https://doi.org/10.1590/s0100-69162011000500004
21. Morimoto, T., Islam, M. P., Hatou, K. (2013). An Intelligent Control Technique for Dynamic Optimization of Temperature during Fruit Storage Process. American Journal of Operations Research, 03 (01), 207–216. doi: https://doi.org/10.4236/ajor.2013.31a020

2021-04-30

## How to Cite

Kachanov, P., Yevseienko, O., & Yevsina, N. (2021). Devising a method to improve the accuracy of maintaining the pre-set temperature and humidity conditions at a vegetable storage facility under a food storing mode . Eastern-European Journal of Enterprise Technologies, 2(2 (110), 89–98. https://doi.org/10.15587/1729-4061.2021.229844

## Section

Industry control systems