The effect of coating concentration of curcumin: H2O on copper winding characteristics

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.275727

Keywords:

aromatic ring, electron spin, magnetic field, copper coil, curcumin concentration

Abstract

Each coil of copper produces a magnetic field and the total field inside the solenoid will be the sum of the fields caused by each coil of current. If the solenoid coils are very closely spaced, the internal field will be essentially parallel to the axis except at the very ends. To find out the magnitude of the magnetic field inside the solenoid, you can use Ampere’s law, namely B=μo∙N∙I, where B is the magnetic field strength (T), µo is air permeability (4×10‒7 T m/A), N is the number of turns and I is an electric current. The value of B depends on the number of turns per unit length, N, and current I. The field is independent of the position inside the solenoid, so the value of B is uniform. This only applies to infinite solenoids, but is a good approximation for actual points that are not near the ends of the solenoid.

The research object is 4 identical copper coils with a length of 3 cm, a coil diameter of 2 cm, a cross section of 1.5 mm2 with an inductance value of 2.17 µH. Before coating curcumin on the copper winding, the initial value of the magnetic field strength was 2.54 µTesla. After the coating process of curcumin:H2O concentration, the value of the magnetic field strength increased.

The method used was immersing 4 copper coils with an inductance value of 2.17 µH in curcumin:H2O concentration in a 100 ml volume measuring cup, with the respective concentrations: (20 %:80 %), (40 %:60 %), (60 %:40 %), (80 %:20 %) in a certain time. Then the copper coil conductor is supplied with a 5-volt DC voltage source. Then the value of the magnetic field strength (B) and electric current is measured, the results are compared with the system before immersing the copper coil.

The measurement results showed that the values of electric current and magnetic field strength increased after curcumin coating compared to before treatment. To see the bonding performance of curcumin and copper, the FTIR test and simulation of the curcumin: copper bond were carried out using Avogadro software. In the IR test, there is a strong absorption of aromatic C-C from 1,650 cm-1 to 1,500 cm-1. Whereas in the simulation, the bond between copper and curcumin produces a bond energy of 164.532 kJ/mol or equivalent to 171.12×10-2 eV

Supporting Agency

  • Universitas Brawijaya Malang

Author Biographies

Zainal Abidin, Brawijaya University; Universitas Islam Lamongan

Mechanical Engineering

Department Postgraduate Program

Department of Electrical Engineering

Eko Siswanto, Brawijaya University

Mechanical Engineering

Department Postgraduate Program

Widya Wijayanti, Brawijaya University

Mechanical Engineering

Department Postgraduate Program

Winarto, Brawijaya University

Mechanical Engineering

Department Postgraduate Program

References

  1. Revathy, S., Elumalai, S., Benny, M., Antony, B. (2011). Isolation, Purification and Identification of Curcuminoids from Turmeric (Curcuma longa L.) by Column Chromatography. Journal of Experimental Sciences, 2 (7), 21–25.
  2. Mary, C. P. V., Vijayakumar, S., Shankar, R. (2018). Metal chelating ability and antioxidant properties of Curcumin-metal complexes – A DFT approach. Journal of Molecular Graphics and Modelling, 79, 1–14. doi: https://doi.org/10.1016/j.jmgm.2017.10.022
  3. Abdul Zahar, Z., Mohsin, H. F., Ibtisam, A. (2020). The Study on Curcuminoids in Chromatography, Spectroscopy and Regioisomerism. Journal of Physics: Conference Series, 1529 (2), 022035. doi: https://doi.org/10.1088/1742-6596/1529/2/022035
  4. Okonogi, S., Naksuriya, O., Charumanee, S., Sirithunyalug, J. (2016). Effect of Aromatic Substitution of Curcumin Nanoformulations on Their Stability. Scientia Pharmaceutica, 84 (4), 625–633. doi: https://doi.org/10.3390/scipharm84040625
  5. Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., Walters, M. A. (2017). The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry, 60 (5), 1620–1637. doi: https://doi.org/10.1021/acs.jmedchem.6b00975
  6. Agne, E. B. P., Hastuti, R., Khabibi, K. (2010). Ekstraksi dan Uji Kestabilan Zat Warna Betasianin dari Kulit Buah Naga (Hylocereus polyrhizus) serta Aplikasinya sebagai Pewarna Alami Pangan. Jurnal Kimia Sains Dan Aplikasi, 13 (2), 51–56. doi: https://doi.org/10.14710/jksa.13.2.51-56
  7. Barik, A., Mishra, B., Kunwar, A., Kadam, R. M., Shen, L., Dutta, S. et al. (2007). Comparative study of copper(II)–curcumin complexes as superoxide dismutase mimics and free radical scavengers. European Journal of Medicinal Chemistry, 42 (4), 431–439. doi: https://doi.org/10.1016/j.ejmech.2006.11.012
  8. Bergman, J. (2022). Metal Properties: Conductivity. Available at: https://blog.eaglegroupmanufacturers.com/metal-properties-conductivity
  9. About Conductivity. Available at: https://www.lehigh.edu/~amb4/wbi/kwardlow/conductivity.htm
  10. Bowler, N., Huang, Y. (2005). Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods. Measurement Science and Technology, 16 (11), 2193–2200. doi: https://doi.org/10.1088/0957-0233/16/11/009
  11. Meza-Morales, W., Estévez-Carmona, M. M., Alvarez-Ricardo, Y., Obregón-Mendoza, M. A., Cassani, J., Ramírez-Apan, M. T. et al. (2019). Full Structural Characterization of Homoleptic Complexes of Diacetylcurcumin with Mg, Zn, Cu, and Mn: Cisplatin-level Cytotoxicity in Vitro with Minimal Acute Toxicity in Vivo. Molecules, 24 (8), 1598. doi: https://doi.org/10.3390/molecules24081598
  12. Morales, N. P., Sirijaroonwong, S., Yamanont, P., Phisalaphong, C. (2015). Electron Paramagnetic Resonance Study of the Free Radical Scavenging Capacity of Curcumin and Its Demethoxy and Hydrogenated Derivatives. Biological and Pharmaceutical Bulletin, 38 (10), 1478–1483. doi: https://doi.org/10.1248/bpb.b15-00209
  13. Khorasani, M. Y., Langari, H., Sany, S. B. T., Rezayi, M., Sahebkar, A. (2019). The role of curcumin and its derivatives in sensory applications. Materials Science and Engineering: C, 103, 109792. doi: https://doi.org/10.1016/j.msec.2019.109792
  14. Lustiani, D. (2009). Syntesis of Curcumin analogues 3, 6-Bis-(4-Hidroksi-3-Metoksibenzilidin)-Piperazin-2.5-Dion with Catalyst HCl.
  15. Radi, A.-E., El-Ghany, N. A., Wahdan, T. (2016). Determination of Esomeprazole on an Electropolymerized L-arginine and β-cyclodextrin Modified Screen Printed Carbon Electrode. Electroanalysis, 28 (5), 1112–1118. doi: https://doi.org/10.1002/elan.201501074
  16. Furukawa, S., Fujita, M., Kanatomi, Y., Minoura, M., Hatanaka, M., Morokuma, K. et al. (2018). Double aromaticity arising from σ- and π-rings. Communications Chemistry, 1 (1). doi: https://doi.org/10.1038/s42004-018-0057-4
  17. Zhao, H.-L. (2017). Quantum mechanical calculation of electron spin. Open Physics, 15 (1), 652–661. doi: https://doi.org/10.1515/phys-2017-0076
  18. Particle on a Ring. Available at: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Quantum_Mechanics/05.5%3A_Particle_in_Boxes/Particle_on_a_Ring
  19. Satrio, W., Winarto, Sugiono, Wardana, I. N. G. (2020). The effect of curcumin coated electrode on hydrogen production through water electrolysis. E3S Web of Conferences, 181, 01003. doi: https://doi.org/10.1051/e3sconf/202018101003
  20. Rauhalahti, M. (2022). Quantum Chemical Studies of Ring Currents of Aromatic Molecules. Helsinki. Available at: https://helda.helsinki.fi/bitstream/handle/10138/350473/Rauhalahti_Markus_dissertation_2022.pdf?sequence=1
  21. Electrophilic Aromatic Substitution – The Mechanism. Available at: https://www.masterorganicchemistry.com/2017/11/09/electrophilic-aromatic-substitution-the-mechanism/
  22. Benzene and Aromaticity. Available at: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/10%3A_Bonding_in_Polyatomic_Molecules/10.07%3A_Benzene_and_Aromaticity
  23. Çakır, S., Biçer, E., Yılmaz Arslan, E. (2015). A Newly Developed Electrocatalytic Oxidation and Voltammetric Determination of Curcumin at the Surface of PdNp-graphite Electrode by an Aqueous Solution Process with Al3+. Croatica Chemica Acta, 88 (2), 105–112. doi: https://doi.org/10.5562/cca2527
  24. Hu, L., Shi, D., Li, X., Zhu, J., Mao, F. et al. (2020). Curcumin-based polarity fluorescent probes: Design strategy and biological applications. Dyes and Pigments, 177, 108320. doi: https://doi.org/10.1016/j.dyepig.2020.108320
  25. Merino, G., Heine, T., Seifert, G. (2004). The Induced Magnetic Field in Cyclic Molecules. Chemistry - A European Journal, 10 (17), 4367–4371. doi: https://doi.org/10.1002/chem.200400457
  26. University Physics. Available at: https://phys.libretexts.org/Bookshelves/University_Physics
  27. Kanno, M., Hoki, K., Kono, H., Fujimura, Y. (2007). Quantum optimal control of electron ring currents in chiral aromatic molecules. The Journal of Chemical Physics, 127 (20), 204314. doi: https://doi.org/10.1063/1.2806180
  28. Mineo, H., Phan, N.-L., Fujimura, Y. (2021). Quantum Control of Coherent π-Electron Dynamics in Aromatic Ring Molecules. Frontiers in Physics, 9. doi: https://doi.org/10.3389/fphy.2021.675134
  29. Jirásek, M., Anderson, H. L., Peeks, M. D. (2021). From Macrocycles to Quantum Rings: Does Aromaticity Have a Size Limit? Accounts of Chemical Research, 54 (16), 3241–3251. doi: https://doi.org/10.1021/acs.accounts.1c00323
The effect of coating concentration of curcumin: H2O on copper winding characteristics

Downloads

Published

2023-06-30

How to Cite

Abidin, Z., Siswanto, E., Wijayanti, W., & Winarto. (2023). The effect of coating concentration of curcumin: H2O on copper winding characteristics. Eastern-European Journal of Enterprise Technologies, 3(6 (123), 42–55. https://doi.org/10.15587/1729-4061.2023.275727

Issue

Section

Technology organic and inorganic substances