Design and optimization of a Type-2 fuzzy logic-based lateral control system for enhancing trajectory stability in autonomous vehicles

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.326193

Keywords:

autonomous vehicle, type-2 FLC, PID control, steering angle, membership function, maneuvers

Abstract

The focus of this study is the lateral control system of autonomous vehicles using steering control. The main objective is to ensure the vehicle consistently stays on the correct path. Existing methods remain limited, as they often assume ideal road conditions without obstacles or dynamic objects. To address this limitation, this study investigates steering angle control for autonomous vehicles in unstructured environments with potential obstacles. It specifically analyzes the application of a type-2 fuzzy logic controller (type-2 FLC) for steering control, using input values in the form of error and delta error. These values are calculated from the difference between the output generated and the steering angle measured by a pulse encoder mounted on the steering wheel. The type-2 FLC demonstrated high accuracy in obstacle avoidance tests: 1.54% (human), 4.28% (one car), 1.2% (two objects on the left), and 2.13% (two on the left, one on the right). In contrast, the PID controller produced higher error rates: 2.19%, 3.49%, 1.12%, and 3.49%, respectively. Full-route testing showed average forward-route errors of 8.87% for the type-2 FLC and 12.35% for the PID controller. On the return route, the type-2 FLC recorded a 4.52% error, while the PID controller showed 7.57%. Overall, the type-2 FLC achieved lower error rates and better accuracy than the PID controller, particularly in dynamic conditions. These results highlight the effectiveness of the type-2 FLC in enhancing autonomous vehicle performance and steering accuracy. Its low error values indicate superior path-tracking capabilities, effectively addressing the research objective

Author Biographies

Bhakti Yudho Suprapto, Universitas Sriwijaya

Doctor of Electrical Engineering, Associate Professor

Department of Electrical Engineering

Suci Dwijayanti, Universitas Sriwijaya

Doctor in Electrical Engineering, Associate Professor

Department of Electrical Engineering

Muhammad Irvin Fadillah, Universitas Sriwijaya

Undergraduate in Electrical Engineering, Student

Department of Electrical Engineering

References

  1. Hussain, R., Zeadally, S. (2019). Autonomous Cars: Research Results, Issues, and Future Challenges. IEEE Communications Surveys & Tutorials, 21 (2), 1275–1313. https://doi.org/10.1109/comst.2018.2869360
  2. Fagnant, D. J., Kockelman, K. (2015). Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167–181. https://doi.org/10.1016/j.tra.2015.04.003
  3. Daily, M., Medasani, S., Behringer, R., Trivedi, M. (2017). Self-Driving Cars. Computer, 50 (12), 18–23. https://doi.org/10.1109/mc.2017.4451204
  4. Yaqoob, I., Khan, L. U., Kazmi, S. M. A., Imran, M., Guizani, N., Hong, C. S. (2020). Autonomous Driving Cars in Smart Cities: Recent Advances, Requirements, and Challenges. IEEE Network, 34 (1), 174–181. https://doi.org/10.1109/mnet.2019.1900120
  5. Parekh, D., Poddar, N., Rajpurkar, A., Chahal, M., Kumar, N., Joshi, G. P., Cho, W. (2022). A Review on Autonomous Vehicles: Progress, Methods and Challenges. Electronics, 11 (14), 2162. https://doi.org/10.3390/electronics11142162
  6. Kuutti, S., Fallah, S., Katsaros, K., Dianati, M., Mccullough, F., Mouzakitis, A. (2018). A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications. IEEE Internet of Things Journal, 5 (2), 829–846. https://doi.org/10.1109/jiot.2018.2812300
  7. Hossain, T., Habibullah, H., Islam, R. (2022). Steering and Speed Control System Design for Autonomous Vehicles by Developing an Optimal Hybrid Controller to Track Reference Trajectory. Machines, 10 (6), 420. https://doi.org/10.3390/machines10060420
  8. Kebbati, Y., Ait‐Oufroukh, N., Ichalal, D., Vigneron, V. (2022). Lateral control for autonomous wheeled vehicles: A technical review. Asian Journal of Control, 25 (4), 2539–2563. https://doi.org/10.1002/asjc.2980
  9. Filho, C. M., Wolf, D. F., Grassi, V., Osorio, F. S. (2014). Longitudinal and lateral control for autonomous ground vehicles. 2014 IEEE Intelligent Vehicles Symposium Proceedings, 588–593. https://doi.org/10.1109/ivs.2014.6856431
  10. Chebly, A., Talj, R., Charara, A. (2017). Coupled Longitudinal and Lateral Control for an Autonomous Vehicle Dynamics Modeled Using a Robotics Formalism. IFAC-PapersOnLine, 50 (1), 12526–12532. https://doi.org/10.1016/j.ifacol.2017.08.2190
  11. Wang, J., Zhang, L., Huang, Y., Zhao, J., Bella, F. (2020). Safety of Autonomous Vehicles. Journal of Advanced Transportation, 2020, 1–13. https://doi.org/10.1155/2020/8867757
  12. Hasmitha, J., Shivani, M., Manasa, M., Chavan, A. (2020). Steering Control for Autonomous Vehicle using Model Predictive Controller. 2020 IEEE International Conference for Innovation in Technology (INOCON), 1–5. https://doi.org/10.1109/inocon50539.2020.9298205
  13. Jung, C., Kim, H., Son, Y., Lee, K., Yi, K. (2014). Parameter adaptive steering control for autonomous driving. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 1462–1467. https://doi.org/10.1109/itsc.2014.6957892
  14. Yuan, T., Zhao, R. (2022). LQR-MPC-Based Trajectory-Tracking Controller of Autonomous Vehicle Subject to Coupling Effects and Driving State Uncertainties. Sensors, 22 (15), 5556. https://doi.org/10.3390/s22155556
  15. Emirler, M. T., Uygan, İ. M. C., Aksun Güvenç, B., Güvenç, L. (2014). Robust PID Steering Control in Parameter Space for Highly Automated Driving. International Journal of Vehicular Technology, 2014, 1–8. https://doi.org/10.1155/2014/259465
  16. Wang, X., Fu, M., Ma, H., Yang, Y. (2015). Lateral control of autonomous vehicles based on fuzzy logic. Control Engineering Practice, 34, 1–17. https://doi.org/10.1016/j.conengprac.2014.09.015
  17. de Silva, C. W. (1995). Applications of fuzzy logic in the control of robotic manipulators. Fuzzy Sets and Systems, 70 (2-3), 223–234. https://doi.org/10.1016/0165-0114(94)00219-w
  18. Kodagoda, K. R. S., Wijesoma, W. S., Teoh, E. K. (2002). Fuzzy speed and steering control of an AGV. IEEE Transactions on Control Systems Technology, 10 (1), 112–120. https://doi.org/10.1109/87.974344
  19. Liang, Q., Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 8 (5), 535–550. https://doi.org/10.1109/91.873577
  20. Arifin, B., Suprapto, B. Y., Prasetyowati, S. A. D., Nawawi, Z. (2022). Steering Control in Electric Power Steering Autonomous Vehicle Using Type-2 Fuzzy Logic Control and PI Control. World Electric Vehicle Journal, 13 (3), 53. https://doi.org/10.3390/wevj13030053
  21. Carreon-Ortiz, H., Valdez, F., Castillo, O. (2023). Comparative Study of Type-1 and Interval Type-2 Fuzzy Logic Systems in Parameter Adaptation for the Fuzzy Discrete Mycorrhiza Optimization Algorithm. Mathematics, 11 (11), 2501. https://doi.org/10.3390/math11112501
  22. Rastelli, J. P., Peñas, M. S. (2015). Fuzzy logic steering control of autonomous vehicles inside roundabouts. Applied Soft Computing, 35, 662–669. https://doi.org/10.1016/j.asoc.2015.06.030
  23. Naranjo, J. E., Gonzalez, C., Garcia, R., de Pedro, T. (2008). Lane-Change Fuzzy Control in Autonomous Vehicles for the Overtaking Maneuver. IEEE Transactions on Intelligent Transportation Systems, 9 (3), 438–450. https://doi.org/10.1109/tits.2008.922880
  24. Ashraf, Z., Roy, M. L., Muhuri, P. K., Danish Lohani, Q. M. (2020). Interval type-2 fuzzy logic system based similarity evaluation for image steganography. Heliyon, 6 (5), e03771. https://doi.org/10.1016/j.heliyon.2020.e03771
  25. Ginarsa, I. M., Muljono, A. B., Nrartha, I. M. A., Zebua, O. (2018). Desain Power System Stabilizer Berbasis Fuzzy Tipe-2 untuk Perbaikan Stabilitas Mesin Tunggal. Jurnal Rekayasa Elektrika, 14 (1), 1–8. https://doi.org/10.17529/jre.v14i1.8464
Design and optimization of a Type-2 fuzzy logic-based lateral control system for enhancing trajectory stability in autonomous vehicles

Downloads

Published

2025-06-30

How to Cite

Suprapto, B. Y., Dwijayanti, S., & Fadillah, M. I. (2025). Design and optimization of a Type-2 fuzzy logic-based lateral control system for enhancing trajectory stability in autonomous vehicles. Eastern-European Journal of Enterprise Technologies, 3(3 (135), 86–104. https://doi.org/10.15587/1729-4061.2025.326193

Issue

Section

Control processes