Devising a comprehensive approach to diagnosing breast cancer subtypes automatically based on deep neural networks

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.344041

Keywords:

Attention U-Net, genetic algorithm, neural network architecture optimization, IHC images, biomedical image segmentation, automatic diagnosing of breast cancer

Abstract

This study investigates the process of analyzing immunohistochemical images of breast cancer. The study has contributed to solving the task of a standardized and objective approach to the quantitative assessment of immunohistochemical biomarkers, which would minimize inter-individual variability in assessments and could be computationally efficient for the analysis of biomedical images.

This paper aims to balance model complexity and generalization by using evolutionary algorithms to tune deep neural networks for biomedical tasks, analyzing how network structure affects performance.

Experiments were conducted on the segmentation of immunohistochemical images on 13 different architectures of neural networks. The evaluation was performed using five accuracy metrics, which allowed for an objective comparison of model performance. The use of a genetic algorithm to optimize the neural network architecture made it possible to adaptively find combinations of parameters, in particular the number of layers and the size of the base filter. The evolutionary approach enabled effective exploration of configuration space, which led to an increase in the Dice metric to 0.74. The resulting increase in accuracy indicates the model’s improved ability to segment images with different characteristics, demonstrating the practical effectiveness of the proposed approach for biomedical diagnosis tasks.

The optimized architecture was used to design a system for diagnosing breast cancer automatically based on neural networks, in particular for the method of automatic diagnosis of breast cancer subtypes. That contributed to improving the accuracy of biomedical image analysis, which could help improve the diagnostic process in clinical practice

Author Biographies

Oleh Berezsky, West Ukrainian National University

Doctor of Technical Sciences

Department of Computer Engineering

Pavlo Liashchynskyi, West Ukrainian National University

Lecturer, PhD Student

Department of Computer Engineering

Petro Liashchynskyi, Lviv Polythechnic National University

Doctor of Philosophy (PhD)

Department of Automated Control Systems

Petro Selskyy, I. Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine

Doctor of Medical Sciences

Department of Pathologic Anatomy, Autopsy Course and Forensic Pathology

References

  1. Hamet, P., Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011
  2. Briganti, G., Le Moine, O. (2020). Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine, 7. https://doi.org/10.3389/fmed.2020.00027
  3. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M. et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  4. Srikantamurthy, M. M., Rallabandi, V. P. S., Dudekula, D. B., Natarajan, S., Park, J. (2023). Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Medical Imaging, 23 (1). https://doi.org/10.1186/s12880-023-00964-0
  5. Al-Jabbar, M., Alshahrani, M., Senan, E. M., Ahmed, I. A. (2023). Analyzing Histological Images Using Hybrid Techniques for Early Detection of Multi-Class Breast Cancer Based on Fusion Features of CNN and Handcrafted. Diagnostics, 13 (10), 1753. https://doi.org/10.3390/diagnostics13101753
  6. Miranda Ruiz, F., Lahrmann, B., Bartels, L., Krauthoff, A., Keil, A., Härtel, S. et al. (2023). CNN stability training improves robustness to scanner and IHC-based image variability for epithelium segmentation in cervical histology. Frontiers in Medicine, 10. https://doi.org/10.3389/fmed.2023.1173616
  7. Zaha, D. C. (2014). Significance of immunohistochemistry in breast cancer. World Journal of Clinical Oncology, 5 (3), 382. https://doi.org/10.5306/wjco.v5.i3.382
  8. Aswathy M. A., Mohan, J. (2020). Analysis of Machine Learning Algorithms for Breast Cancer Detection. Handbook of Research on Applications and Implementations of Machine Learning Techniques, 1–20. https://doi.org/10.4018/978-1-5225-9902-9.ch001
  9. Nabok, A. I. (2023). Prevalence and incidence of breast cancer in Ukraine. Wiadomości Lekarskie, 76 (10), 2219–2223. Available at: https://www.researchgate.net/profile/Serhii-Tertyshnyi/publication/375025887_WL_Layout_10_2023/links/653bdaf73cc79d48c5b14c25/WL-Layout-10-2023.pdf#page=93
  10. Siegel, R. L., Kratzer, T. B., Giaquinto, A. N., Sung, H., Jemal, A. (2025). Cancer statistics, 2025. CA: A Cancer Journal for Clinicians, 75 (1), 10–45. https://doi.org/10.3322/caac.21871
  11. Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
  12. Polley, M.-Y. C., Leung, S. C. Y., McShane, L. M., Gao, D., Hugh, J. C., Mastropasqua, M. G. et al. (2013). An International Ki67 Reproducibility Study. JNCI: Journal of the National Cancer Institute, 105 (24), 1897–1906. https://doi.org/10.1093/jnci/djt306
  13. Kumar, N., Gupta, R., Gupta, S. (2020). Whole Slide Imaging (WSI) in Pathology: Current Perspectives and Future Directions. Journal of Digital Imaging, 33 (4), 1034–1040. https://doi.org/10.1007/s10278-020-00351-z
  14. Siddique, N., Paheding, S., Elkin, C. P., Devabhaktuni, V. (2021). U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access, 9, 82031–82057. https://doi.org/10.1109/access.2021.3086020
  15. Mehta, R., Arbel, T. (2019). 3D U-Net for Brain Tumour Segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 254–266. https://doi.org/10.1007/978-3-030-11726-9_23
  16. Chen, W., Liu, B., Peng, S., Sun, J., Qiao, X. (2019). S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 358–368. https://doi.org/10.1007/978-3-030-11726-9_32
  17. Benny, S., Varma, S. L. (2021). Semantic Segmentation in Immunohistochemistry Breast Cancer Image using Deep Learning. 2021 International Conference on Advances in Computing, Communication, and Control (ICAC3), 1–3. https://doi.org/10.1109/icac353642.2021.9697264
  18. Benny, S., Varma, S. L. (2023). Attention-enhanced residual U-Net for nucleus segmentation in immunohistochemistry images. International Journal of Applied Engineering & Technology, 5 (4), 1266–1283. Available at: https://romanpub.com/resources/ijaet20v5-4-2023-138.pdf
  19. Mahanta, L. B., Hussain, E., Das, N., Kakoti, L., Chowdhury, M. (2021). IHC-Net: A fully convolutional neural network for automated nuclear segmentation and ensemble classification for Allred scoring in breast pathology. Applied Soft Computing, 103, 107136. https://doi.org/10.1016/j.asoc.2021.107136
  20. Kromp, F., Fischer, L., Bozsaky, E., Ambros, I. M., Dorr, W., Beiske, K. et al. (2021). Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation. IEEE Transactions on Medical Imaging, 40 (7), 1934–1949. https://doi.org/10.1109/tmi.2021.3069558
  21. Xu, S., Li, G., Song, H., Wang, J., Wang, Y., Li, Q. (2024). GeNSeg-Net: A General Segmentation Framework for Any Nucleus in Immunohistochemistry Images. Proceedings of the 32nd ACM International Conference on Multimedia, 4475–4484. https://doi.org/10.1145/3664647.3681441
  22. Aboudessouki, A., Ali, Kh. M., Elsharkawy, M., Alksas, A., Mahmoud, A., Khalifa, F. et al. (2023). Automated Diagnosis of Breast Cancer Using Deep Learning-Based Whole Slide Image Analysis of Molecular Biomarkers. 2023 IEEE International Conference on Image Processing (ICIP). https://doi.org/10.1109/icip49359.2023.10222479
  23. Tkachova, O. V., Melnyk, H. M., Pitsun, O. Y., Datsko, T. V., Klishch, I. M., Derysh, B. B. (2023). A. s. No. 118979. Baza danykh tsyfrovykh imunohistokhimichnykh zobrazhen raku molochnoi zalozy «IHCDBI». declareted: 10.05.2023; published: 31.07.2023, Bul. No. 76.
  24. Huynh, N. (2023). Understanding evaluation metrics in Medical Image Segmentation. Available at: https://medium.com/mastering-data-science/understanding-evaluation-metrics-in-medical-image-segmentation-d289a373a3f
  25. WBRT pislia BCS. Rak molochnoi zalozy na rannikh stadiyakh: Klinichna nastanova, zasnovana na dokazakh (2024). Ministerstvo okhorony zdorovia Ukrainy, 27–28. Available at: https://www.dec.gov.ua/wp-content/uploads/2025/02/kn_2025_rannij-rmz.pdf
  26. Berezsky, O., Pitsun, O., Melnyk, G., Datsko, T., Izonin, I., Derysh, B. (2023). An Approach toward Automatic Specifics Diagnosis of Breast Cancer Based on an Immunohistochemical Image. Journal of Imaging, 9 (1), 12. https://doi.org/10.3390/jimaging9010012
  27. Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio, I. T. et al. (2019). Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 30 (8), 1194–1220. https://doi.org/10.1093/annonc/mdz173
  28. Liashchynskyi, P. B., Berezsky, O. M. (2024). Computer diagnostic systems: methods and tools. Ukrainian Journal of Information Technology, 6 (2), 57–63. https://doi.org/10.23939/ujit2024.02.057
  29. Berezsky, O. M., Liashchynskyi, P. B. (2024). Development of the architecture of a computer aided diagnosis system in medicine. Applied Aspects of Information Technology, 7 (4), 359–369. https://doi.org/10.15276/aait.07.2024.25
Devising a comprehensive approach to diagnosing breast cancer subtypes automatically based on deep neural networks

Downloads

Published

2025-12-31

How to Cite

Berezsky, O., Liashchynskyi, P., Liashchynskyi, P., & Selskyy, P. (2025). Devising a comprehensive approach to diagnosing breast cancer subtypes automatically based on deep neural networks. Eastern-European Journal of Enterprise Technologies, 6(2 (138), 15–25. https://doi.org/10.15587/1729-4061.2025.344041