Impact of malt extracts on lactobacillus and bifidobacterium in probiotic fermented beverages

Authors

  • Наталія Василівна Чепель National University of Food Technology 68, str. Volodimirskaya, Kyiv, Ukraine, 03680, Ukraine
  • Валентина Миколаївна Кошова National University of Food Technologies 68 Volodymyrskaya str., Kyiv, Ukraine, 03680, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.51063

Keywords:

malt extracts, probiotic bacteria, probiotic complexes, fermented beverages, viability, biochemical activity

Abstract

The research of the impact of barley and oat malt extracts as prebiotic complex on the viability and biochemical activity of Lactobacillus spp. and Bifidobacterium spp. was presented in the paper. The intensive growth of bacteria Lactobacillus spp. and Bifidobacterium spp. 1 hour after fermenting the milk-malt mix with BME and OME in the ratio 95:5 based on the starter "Bifivit" compared with based on the starter "Symbilakt" was proved. The number of CFU of bacteria Lactobacillus spp. and Bifidobacterium spp. in 1sm3 of this fermented beverage was 1,59±0,04*108 at the end of shelf life, which corresponded to the recommended number of CFU of probiotic lactic acid cultures in foods according to FAO/WHO. The optimum mass fraction of solids for administering malt extracts to a dairy base was 14 %, which allowed to reach the greatest numbers of CFU of bacteria Lactobacillus spp. and Bifidobacterium spp. The concentrations of lactic acid in fermented beverages with 95 % BME and 5 % OME based on the starter "Bifivit" were twice higher than based on the starter "Symbilakt", which was shown by accelerated acid coagulation and reduced duration of the biotechnological processing of the milk-malt mix. The combination of bacteria Lactobacillus spp. and Bifidobacterium spp. of two starters provided lactic acid extraction in probiotic fermented beverages with BME and OME at a level that does not exceed the maximum allowed, and prevented the accumulation of significant concentrations of D(-)- lactic acid. The best aromatic composition of secondary fermentation metabolites was in the fermented beverage with 95 % BME and 5 % OME based on the starter "Bifivit", which corresponded to low concentrations of acetaldehyde (27.00 mg/cm3), n-propane (11.84 mg/cm3), isobutane (29.30 mg/cm3), acetaldehyde (27.00 mg/cm3) and high concentrations of 2-methyl-1-butanol (77.37 mg/cm3) and 3-methyl-1-butanol (211.11 mg/cm3), and the concentrations of methyl acetate (10.61 mg/cm3) and ethyl acetate (85.11 mg/cm3) were optimal for forming harmonious aroma of the fermented beverage.

Author Biographies

Наталія Василівна Чепель, National University of Food Technology 68, str. Volodimirskaya, Kyiv, Ukraine, 03680

Candidate of engineering, Associate Professor

Department of technology of milk and dairy product

Валентина Миколаївна Кошова, National University of Food Technologies 68 Volodymyrskaya str., Kyiv, Ukraine, 03680

PhD, Professor

Department of Biotechnology of Fermentative Products and Wine-making

References

  1. Lourens-Hattingh, A., Viljoen, B. C. (2001). Yogurt as probiotic carrier food. International Dairy Journal, 11 (1-2), 1–17. doi: 10.1016/s0958-6946(01)00036-x
  2. Tian Hong, B., Xiang Chen, M. (2004). Prebiotic and probiotic cultured dairy products. China Dairy Industry, 32, 32–34.
  3. Donkor, O. N., Nilmini, S. L. I., Stolic, P., Vasiljevic, T., Shah, N. P. (2007). Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. International Dairy Journal, 17 (6), 657–665. doi: 10.1016/j.idairyj.2006.08.006
  4. FAO/WHO (2002). Guidelines for the evaluation of probiotics in food, Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. Available at: http:ftp.fap.org/es/esn/food/wgreport2.pdf
  5. Burgain, J., Gaiani, C., Francius, G., Revol-Junelles, A. M., Cailliez-Grimal, C., Lebeer, S. et. al. (2013). In vitro interactions between probiotic bacteria and milk proteins probed by atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 104, 153–162. doi: 10.1016/j.colsurfb.2012.11.032
  6. Douglas, L. C., Sanders, M. E. (2008). Probiotics and Prebiotics in Dietetics Practice. Journal of the American Dietetic Association, 108 (3), 510–521. doi: 10.1016/j.jada.2007.12.009
  7. Meile, L., Leblay, G., Thierry, A. (2008). Safety assessment of dairy microorganisms: Propionibacterium and Bifidobacterium. International Journal of Food Microbiology, 126 (3), 316–320. doi: 10.1016/j.ijfoodmicro.2007.08.019
  8. Rayes, A. A. (2012). Enhancement of probiotic bioactivity by some prebiotics to produce bio-fermented milk. Life Science Journal, 9 (3), 2246–2253.
  9. Al-Sheraji, S., Ismail, A., Manap, M., Mustafa, S., Yusof, R., Hassan, F. (2013). Prebiotics as functional foods: A review. Journal of Functional Foods, 5 (4), 1542-1553. doi: 10.1016/j.jff.2013.08.009
  10. Boehm, G., Fanaro, S., Jelinek, J., Stahl, B., Marini, A. (2003). Prebiotic concept for infant nutrition. Acta Paediatr Suppl., 91 (441), 64–67.
  11. Yasmin, A., Butt, M., Afzaal, M., Baak, M., Nadeem, M., Shahid, M. (2015). Prebiotics, gut microbiota and metabolic risks: Unveiling the relationship, Journal of functional foods, 17, 189–201. doi: 10.1016/j.jff.2015.05.004
  12. Kurdi, P., Hansawasdi, C. (2015). Assessment of the prebiotic potential of oligosaccharide mixtures from rice bran and cassava pulp. LWT – Food Science and Technology, 63 (2), 1288–1293. doi: 10.1016/j.lwt.2015.04.031
  13. Pandey, S., Mishra, H. (2015). Optimization of the prebiotic & probiotic concentration and incubation temperature for the preparation of synbiotic soy yoghurt using response surface methodology. LWT – Food Science and Technology, 62 (1), 458–467. doi: 10.1016/j.lwt.2014.12.003
  14. Li, W., Zhang, J., Yu, C., Qing, L., Dong, F., Wang, G., Gu, G., Guo, Z. (2015). Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydrate Polymers, 121 (5), 315–319. doi: 10.1016/j.carbpol.2014.12.055
  15. Kallel, F., Driss, D., Bouaziz, F., Neifer, M., Ghorbel, R., Chaabouni, S. (2015). Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. Food and Bioproducts Processing, 94, 536–546. doi: 10.1016/j.fbp.2014.07.012
  16. Stam, J., Stuijvenberg, M., Garssen, J., Knipping, K., Saue, P. (2011). A mixture of three prebiotics does not affect vaccine specific antibody responses in healthy term infants in the first year of life. Vaccine, 29 (44), 7766–7772. doi: 10.1016/j.vaccine.2011.07.110
  17. Szwajgier, D., Gustaw, W. (2015). The addition of malt to milk-based desserts: Influence on rheological properties and phenolic acid content. LWT – Food Science and Technology, 62 (1), 400–408. doi: 10.1016/j.lwt.2015.01.028
  18. Kazemi, M., Soltanieh, M., Yazdanshenas, M. (2013). Mathematical modeling of crossflow microfiltration of diluted malt extract suspension by tubular ceramic membranes. Journal of Food Engineering, 116 (4), 926–933. doi: 10.1016/j.jfoodeng.2013.01.029
  19. Gebremariam, M., Hassani, A., Zarnkow, M., Becker, T. (2015). Investigation of fermentation conditions for teff (Eragrostis tef) malt-wort by Lactobacillus amylolyticus. LWT - Food Science and Technology, 61 (1), 164–171. doi: 10.1016/j.lwt.2014.11.008
  20. Mahynko, L. V., Covbasa, V. M., Zapototska, O. V., Emelyanova, N. O., Kovalevskaya, E. I. (2004).Using malt extracts in co-extrusion food products, NUFT Scientific works, 15, 68–70.
  21. Nekrasov, P. O., Tkachenko, N. A. (2014). Innovative technology of functional combined fermented dairy beverages with Bifidobacterium. Food science and technology, 2 (27), 49–56.
  22. Ewaschuk, J. B., Naylor, J. M., Zello, G. A. (2005). d-Lactate in human and ruminant metabolism. Journal of Nutrition, 135, 1619–1625.
  23. Jin, Q., Jung, J. Y., Kim, Y. J., Eom, H.-J., Kim, S.-Y., Kim, T.-J., Han, N. S. (2009). Production of l-lactate in Leuconostoc citreum via heterologous expression of l-lactate dehydrogenase gene. Journal of Biotechnology, 144 (2), 160–164. doi: 10.1016/j.jbiotec.2009.08.012
  24. Gleeson, T. T., Dalessio, P. M. (1990). Lactate: a substrate for reptilian muscle gluconeogenesis following exhaustive exercise. Journal of Comparative Physiology B, 160 (3), 331–338. doi: 10.1007/bf00302600
  25. Brasca, M., Morandi, S., Lodi, R., Tamburini, A. (2007). Redox potential to discriminate among species of lactic acid bacteria. Journal of Applied Microbiology, 103 (5), 1516–1524. doi: 10.1111/j.1365-2672.2007.03392.x
  26. Bongaerts, G. P., Tolboom, J. J. M., Naber, A. H. J., Sperl, W. J. K., Severijnen, R. S. V. M., Bakkeren, J. A. J. M., Willems, J. L. (1997). Role of bacteria in the pathogenesis of short bowel syndrome-associated D-lactic acidemia. Microbial Pathogenesis, 22 (5), 285–293. doi: 10.1006/mpat.1996.0122
  27. Csutak, E. (2010). Effect of various prebiotics on LA-5 and BB-12 probiotic bacteria multiplication, and on probiotic yoghurt production. Acta Univ. Sapientiae, Alimentaria, 3, 35–52.
  28. Chramostová, J., Mošnová, R., Lisová, I. Pešek, E., Drbohlav, J., Němečková I. (2014). Influence of Cultivation Conditions on the Growth of Lactobacillus acidophilus, Bifidobacterium sp., and Streptococcus thermophilus, and on the Production of Organic Acids in Fermented Milks. Czech J. Food Sci., 32 (5), 422–429.
  29. Luana, N., Rossana, C., Curiel, J., Kaisa, P., Marco, G., Rizzello, C. (2014). Manufacture and characterization of a yogurt-like beverage made with oat flakes fermented by selected lactic acid bacteria. International Journal of Food Microbiology, 185, 17–26. doi: 10.1016/j.ijfoodmicro.2014.05.004
  30. Mota, M., Lopes, R., Delgadillo, I., Saraiva, J. (2015). Probiotic yogurt production under high pressure and the possible use of pressure as an on/off switch to stop/start fermentation. Process Biochemistry, 50 (6), 906–911. doi: 10.1016/j.procbio.2015.03.016.
  31. Dragone, G., Mussatto, S. I., Oliveira, J. M., Teixeira, J. A. (2009). Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry, 112 (4), 929–935. doi: 10.1016/j.foodchem.2008.07.005
  32. Pino, J. A., Queris, O. (2011). Analysis of volatile compounds of mango wine. Food Chemistry, 125 (4), 1141–1146. doi: 10.1016/j.foodchem.2010.09.056
  33. Park, H., Lee, S., Song, S., Kim, Y. (2013). Characterization of volatile components in makgeolli, a traditional korean rice wine, with or without pasteurization, during storage. Molecules, 18 (5), 5317–5325. doi: 10.3390/molecules18055317

Published

2015-10-15

How to Cite

Чепель, Н. В., & Кошова, В. М. (2015). Impact of malt extracts on lactobacillus and bifidobacterium in probiotic fermented beverages. Eastern-European Journal of Enterprise Technologies, 5(11(77), 67–76. https://doi.org/10.15587/1729-4061.2015.51063

Issue

Section

Technology and Equipment of Food Production