Development of cryogenic technology for the production of nano-powders from topinambour using liquid and gaseous nitrogen

Authors

  • Раїса Юріївна Павлюк Kharkiv State University of Food Technology and Traders Str. Klochkivska, 333, Kharkov, Ukraine, 61051, Ukraine https://orcid.org/0000-0003-3440-0451
  • Олександр Семенович Бессараб National University of Food Technologies 68 Volodimirovska str., Kyiv, Ukraine, 01601, Ukraine https://orcid.org/0000-0001-8620-8694
  • Вікторія Вадимівна Погарська Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0001-8031-5210
  • Катерина Сергіївна Балабай Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0001-6942-8556
  • Світлана Михайлівна Лосєва Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0002-1112-6616

DOI:

https://doi.org/10.15587/1729-4061.2015.56170

Keywords:

cryogenic freezing, low-temperature grinding, freeze drying, topinambour, inulin, nanopowders

Abstract

The cryogenic technology for the production of nanopowders from topinambour, which differs from conventional in applying cryogenic "shock" freezing using liquid and gaseous nitrogen, low-temperature fine grinding and freeze drying, allowing not only to preserve all biologically active substances, but also to extract them better from the bound with the biopolymers of nanocomplexes in the free state and to destroy much of the inulin polysaccharide to its individual monomers - fructose was proposed and developed.

The technology differs from conventional in the fact that it completely excludes the heat treatment of a product and is based on applying the cold treatment of raw materials in the preparation of topinambour, freezing and low-temperature fine grinding followed by freeze drying.

New technology allows to obtain additives from topinambour in the form of fine powders with a particle size dozens of times smaller than in the conventional grinding. Their quality in the content of fructose in the free state and BAS, withdrawn from the bound state, surpasses domestic and foreign counterparts.

Comparison of the amino acid composition of proteins in the free and bound state in the original inulin-containing raw materials (freeze-dried topinambour) and nanopowders from topinambour was performed. It was found that in comparison with initial raw materials, in the fine grinding of frozen inulin-containing raw materials there is a significant mechanical destruction of protein molecules to individual amino acids, their transition from the bound state to the free state. Thus, in nanopowders from topinambour, the mass fraction of bound amino acids decreases twofold in comparison with the initial raw materials. At the same time, there is the 1,7-10-fold increase in the mass fraction of amino acids, which are in the free state.

Author Biographies

Раїса Юріївна Павлюк, Kharkiv State University of Food Technology and Traders Str. Klochkivska, 333, Kharkov, Ukraine, 61051

Doctor of technical sciences, professor, laureate of the State Prize of Ukraine, Honored Worker of Science and Technology of Ukraine

Department of recycling technologies of fruits, vegetables and milk

Олександр Семенович Бессараб, National University of Food Technologies 68 Volodimirovska str., Kyiv, Ukraine, 01601

PhD, professor, Honored Worker of education in Ukraine

Department of Technology preservation

Вікторія Вадимівна Погарська, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Doctor of technical sciences, professor, the State Prize laureate of Ukraine Department of Technology processing of fruits, vegetables and milk

Катерина Сергіївна Балабай, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Department of Technology processing of fruits, vegetables and milk

Світлана Михайлівна Лосєва, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Assistant professor

Department of Technology processing of fruits, vegetables and milk

References

  1. FAO/WHO/UNU (2004). Global Strategy on Diet, Physical Activity and Health / resolution WHA.55.23 adopted by the 57-th Session of the World Health Assembly (WHA), World Health Organization, Geneva.
  2. FAO/WHO/UNU (2013). Dietary protein quality evalution in human nutrition. Report of an FAO Expert Consultation. Food and agriculture organization of the united nations Rome, 92, 57.
  3. Tutelian, V., Razumov, A., Vyalkov, A. and others (2010). Scientific basis for a healthy diet. Moscow: Publishing house "Panorama". Science and Practice, 816.
  4. Simahina, G., Ukrainets, A. (2010). Innovative technologies and products of healthy food. Kyiv: NUFT, 295.
  5. Nechayev, A. (2007). Food Chemistry. St. Petersburg: Publisher "GIORD", 635.
  6. Pavlyuk, R., Pogarskaya, V., Pavlyuk, V., Berestova, A., Maksimova, N. (2015). Cryogenic mechanochemistry in nanotechnologies of food products: monography. Kharkiv: KSUFT, 218.
  7. Tur, J. A., Bibiloni, M. M. (2015). Functional Foods. Reference Module in Food Science, from Encyclopedia of Food and Health, 157–161. doi: 10.1016/b978-0-12-384947-2.00340-8
  8. Galland, L. (2014). Functional Foods: Health Effects and Clinical Applications. Reference Module in Biomedical Sciences, from Encyclopedia of Human Nutrition (Third Edition), 366–371. doi: 10.1016/b978-0-12-375083-9.00130-6
  9. Bach, V., Clausen, M., Edelenbos, M. (2015). Production of Jerusalem Artichoke (Helianthus tuberosus L.) and Impact on Inulin and Phenolic Compounds. Processing and Impact on Active Components in Food, 97–102. doi: 10.1016/b978-0-12-404699-3.00012-3
  10. Afoakwah, N. A., Dong, Y., Zhao, Y. Xiong, Z., Owusu, J., Wang, Y., Zhang, J. (2015). Characterization of Jerusalem artichoke (Helianthus tuberosus L.) powder and its application in emulsion-type sausage. LWT – Food Science and Technology, 64 (1), 74–81. doi: 10.1016/j.lwt.2015.05.030
  11. Radovanovic, A., Stojceska, V., Plunkett, A. Jankovic, S., Milovanovic, D., Cupara,S. (2015). The use of dry Jerusalem artichoke as a functional nutrient in developing extruded food with low glycemic index. Food Chemistry, 177, 81–88. doi: 10.1016/j.foodchem.2014.12.096
  12. Dieticheskie svojstva inulina i oligofruktozy BeneoTM [Dietary properties of inulin and oligofructose BeneoTM.Available at: http://www.beneo.com/Homepage/
  13. Kolida, S., Tuohy, K., Gibson, G. (2002). Prebiotic effects of inulin and oligofructose. The British journal of nutrition, 87 (2), 193–197.
  14. Pavlyuk, R., Pogarskaya, V., Bessarab, O., Balalai, K., Borysova, A., Loseva, S. (2014). Development of nanotechnology of fine-dispersed additives with the use of cryogenic mechanical modification. Eastern-European journal of enterprise technologie, 6/10 (72), 54–57. doi: 10.15587/1729-4061.2014.32607
  15. Chernenko, A., Altunian, M., Kubishkina, N. (2010). Perspective directions in technologies of topinambour processing. News of universities, Food, 5-6, 39–41.
  16. Nikitin, P., Novikov, I. (2008). Pat. 2444908. The method of complex processing of the tubers of Jerusalem artichoke, Russian Federation. Available at: http://www.findpatent.ru/patent/244/2444908.html
  17. Magomedov, G. O., Magomedov, M. G., Astredinova, V. V., Musaev, N. I. et. al. (2012). Patent 2467070 RF, MPK S13K 11/00, A23L 1/212 Sposob poluchenija koncentrirovannoj pasti iz topinambura. Zajavitel' i patentoobladatel' VGTA, № 2011112624/13; zajavl. 01.04.2011; opubl. 20.11.2012, Bjul. № 32.
  18. Tu, J., Zhang, M., Xu, B., Liu, H. (2015). Effects of different freezing methods on the quality and microstructure of lotus (Nelumbo nucifera) root. International Journal of Refrigeration, 52, 59–65. doi: 10.1016/j.ijrefrig.2014.12.015
  19. James, S. J., James, C. (2014). Chilling and Freezing. Food Safety Management, 20, 481–510. doi: 10.1016/b978-0-12-381504-0.00020-2
  20. Shi, L., Li, W., Sun, J., Qiu, Y.,Wei,X., Luan, G.Hu, Y.,Tatsumi, E. (2016). Grinding of maize: The effects of fine grinding on compositional, functional and physicochemical properties of maize flour. Journal of Cereal Science, 68, 25–30. doi: 10.1016/j.jcs.2015.11.004
  21. Boldyrev, V. V. (2004). Mechanochemical modification and synthesis of drugs. Journal of Materials Science, 39 (16/17), 5117–5120. doi: 10.1023/b:jmsc.0000039193.69784.1d
  22. Balaz, P., Balaz, M., Bujnakova, Z. (2014). Mechanochemistry in technology: from minerals to nanomaterials and drugs. Chemical Engineering & Technology, 37 (5), 747–756. doi: 10.1002/ceat.201300669
  23. Zhao, X., Zhu, H., Zhang, G., Tang, W. (2015). Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders. Powder Technology, 286, 838–844. doi: 10.1016/j.powtec.2015.09.025
  24. Balaz, P. (2010). Mechanochemistry in Nanoscience and Minerals Engineering. Woodhead Publishing Limited, 400.

Published

2015-12-18

How to Cite

Павлюк, Р. Ю., Бессараб, О. С., Погарська, В. В., Балабай, К. С., & Лосєва, С. М. (2015). Development of cryogenic technology for the production of nano-powders from topinambour using liquid and gaseous nitrogen. Eastern-European Journal of Enterprise Technologies, 6(10(78), 4–10. https://doi.org/10.15587/1729-4061.2015.56170

Issue

Section

Technology and Equipment of Food Production