Effect of heat treatment with antioxidants on oxygen radical scavenging during storage of zucchini squash

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.56188

Keywords:

zucchini squash, storage, heat treatment, antioxidants, malonic dialdehyde, superoxide dismutase, catalase, peroxidase

Abstract

Despite the proven effectiveness of heat treatment and antioxidants for reducing oxidative chilling injury, their combined effect during storage of zucchini squash was not considered in this aspect. The paper describes the results of investigating the effect of heat treatment with the antioxidant composition on the chilling injury level, the amount of malonic dialdehyde and dynamics of enzymatic antioxidants during storage of zucchini squash.

It was found that application of heat treatment with antioxidants reduces the chilling injury during storage of zucchini squash. The combination of heat treatment and antioxidants allows to reduce or stabilize the amount of malonic dialdehyde at the same level, depending on the chilling sensitivity of the zucchini squash hybrid. Heat treatment with antioxidants induces the activity of superoxide dismutase and catalase in the beginning of storage. The superoxide dismutase activity stabilizes until the 18th day of storage at the same level, and catalase activity reduction slows down by 30...40% depending on the zucchini squash hybrid. Using heat treatment with antioxidants reduces the growth rate of peroxidase activity compared to control samples by 7...18%. Close inverse correlations between the level of malonic dialdehyde, the activity of superoxide dismutase and catalase indicate the strengthening of the antioxidant function of these enzymes in experimental groups of fruits.

The combination of heat treatment and antioxidants to prepare zucchini squash for storage allows to effectively reduce oxidative chilling injury.

Author Biographies

Олеся Петрівна Прісс, Tavria State Agrotechnological University, B.Khmelnitsky Avenue, 18, Melitopol, Ukraine, 72312

PhD, associate professor

Department of technology of processing and storage of agricultural products

Валентина Василівна Калитка, Tavria State Agrotechnological University, B.Khmelnitsky Avenue, 18, Melitopol, Ukraine, 72312

Professor

Scientifical Research Institute of agricultural technologies and ecology

References

  1. Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K., Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5(6), 709–725.
  2. Shewfelt, R. L., Del Rosario, B. A. (2000). The role of lipid peroxidation in storage disorders of fresh fruits and vegetables. HortScience, 35 (4), 575–579.
  3. Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48 (12), 909–930. doi: 10.1016/j.plaphy.2010.08.016.
  4. Sharma, P., Jha, A. B., Dubey, R. S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 217037, doi: 10.1155/2012/217037
  5. Scandalios, J. G. (1993). Oxygen stress and superoxide dismutases. Plant physiology, 101 (1), 7.
  6. Hodges, D. M., DeLong, J. M. (2007). The relationship between antioxidants and postharvest storage quality of fruits and vegetables. Stewart Posthar. Rev., 3 (3), 1–9. doi: 10.2212/spr.2007.3.12
  7. Lester, G. E. (2003). Oxidative stress affecting fruit senescence. In Hodges D. M. ed. Postharvest oxidative stress in horticultural crops. New York: Food Products Press, 113–129.
  8. Sugar, D. (2009). Influence of temperature and humidity in management of postharvest decay. Stewart Postharvest Review, 5 (2), 1–5. doi: 10.2212/spr.2009.2.1
  9. Kanlayanarat, S., Rolle, R., Acedo, Jr A. (2009). Horticultural chain management for countries of Asia and the Pacific region: a training package. Rome, Italy: FAO, 214
  10. McCollum, T. G. (2007). Squash. In Gross, K. C., Wang, C. Y., Saltveit, M. eds. Agricultural handbook number 66: The commercial storage of fruits, vegetables, and florist and nursery stocks. Washington, DC. Аvailable at: http://www.ba.ars.usda.gov/hb66/squash.pdf
  11. Carvajal, F., Martinez, C., Jamilena, M., Garrido, D. (2011). Differential response of zucchini varieties to low storage temperature. Scientia Horticulturae, 130 (1), 90–96. doi: 10.1016/j.scienta.2011.06.016.
  12. Brew, B. S., Berry, A. D., Sargent, S. A., Shaw, N. L., Cantliffe, D. J. (2006). Determination of optimum storage conditions for ‘baby’summer squash fruit (Cucurbita pepo). Proc. Florida State Hort. Soc., 119, 343–346.
  13. Lurie, S., Pedreschi, R. (2014). Fundamental aspects of postharvest heat treatments. Horticulture Research, 1. doi: 10.1038/hortres.2014.30.
  14. Wang, C. Y. (1995). Effect of temperature preconditioning on catalase, peroxidase, and superoxide dismutase in chilled zucchini squash. Postharvest Biol. Technol., 5 (1), 67–76. doi: 10.1016/0925–5214(94)00020–S.
  15. Lurie, S. (1998). Postharvest heat treatments. Postharvest Biol. Technol., 14 (3), 257–269. doi: 10.1016/S0925–5214(98)00045–3
  16. Wang, C. Y. (1994). Combined treatment of heat shock and low temperature conditioning reduces chilling injury in zucchini squash. Postharvest Biol. Technol., 4 (1), 65–73.doi: 10.1016/0925–5214(94)90008–6
  17. Laamim, M., Lapsker, Z., Fallik, E., Ait–Oubahou, A., Lurie, S. (1998). Treatments to reduce chilling injury in harvested cucumbers. Advances in horticultural science, 12 (4), 175–178.
  18. Priss, O. P., Prokudina,T. F., Zhukova, V. F. (2009). Substance for the treatment of fruit vegetables before storage. Pat. 41177 Ukraine, IPC А23В 7/00, А23L 3/34. u 200813962; declared 04.12.2008; published 12.05.09, № 9.
  19. Dykyi, I. L., Ostapenko, V. M., Filimonova, N. I., Heyderikh, O. H., Kovalov, V. V. (2005). Microbiological study a chlorophyllipt for prepare a soft form of anti–infective drug. Journal of Pharmacy, 4, 73–76.
  20. Sanitary rules and regulations on the use of food additives: approved Ministry of Health of Ukraine 23.07.96 № 222. Available at: http://zakon4.rada.gov.ua/laws/show/z0715–96.
  21. Gonzalez–Aguilar, G. A., Cruz, R., Baez, R., Wang, C. Y. (1999). Storage quality of bell peppers pretreated with hot water and polyethylene packaging. Journal of food quality, 22 (3), 287–299. doi: 10.1111/j.1745–4557.1999.tb00558.x.
  22. Musiienko, M. M., Parshykova, T. V., Slavnyi, P. C. (2001). Spectrophotometric methods in practice, physiology, biochemistry and ecology of plants. Kyiv: Fitosotsiotsentr, 200.
  23. Sirota, T. V. (2000). A method for determining the antioxidant activity of superoxide dismutase and chemical compounds. Russian Federation Patent 2144674. МПК7 G 01 N33/52, G 01 N33/68. № 99103192/14; declared 24.02.1999; publashed 20.01.2000, № 2, 2.
  24. Hrytsayenko, Z. M., Hrytsayenko, A. O., Karpenko,V. P. (2003). Methods of biological and agrochemical research plants and soils. Kyiv: NIChLAVA, 320.
  25. Zemljanuhin, A. A. (1985). Small workshop on Biochemistry. Voronezh: VHU, 128.
  26. Balandrán–Quintana, R. R., Mendoza–Wilson, A. M., Gardea–Béjar, A. A., Vargas–Arispuro, I., Martı́nez–Téllez, M. A. (2003). Irreversibility of chilling injury in zucchini squash (Cucurbita pepo L.) could be a programmed event long before the visible symptoms are evident. Biochemical and biophysical research communications, 307 (3), 553–557. doi: 10.1016/S0006–291X(03)01212–9
  27. Del Rio, D., Stewart, A. J., Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis., 15 (4), 316–328. doi: 10.1016/j.numecd.2005.05.003
  28. Casano, L. M., Martin, M., Sabater, B. (1994). Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature–senescent than in young barley leaves. Plant Physiology, 106 (3), 1033–1039. doi: 10.1104/pp.106.3.1033
  29. Gualanduzzi, S., Baraldi, E., Braschi, I., Carnevali, F., Gessa, C. E., De Santis, A. (2009). Respiration, hydrogen peroxide levels and antioxidant enzyme activities during cold storage of zucchini squash fruit. Postharvest Biol. Technol., 52 (1), 16–23. doi: 10.1016/j.postharvbio.2008.09.010
  30. Zheng, Y., Fung, R. W., Wang, S. Y., Wang, C. Y. (2008). Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen. Postharvest Biol. Technol., 47 (2), 151–158. doi: 10.1016/j.postharvbio.2007.06.016
  31. Keren‐Keiserman, A., Tanami, Z., Shoseyov, O., Ginzberg, I. (2004). Peroxidase activity associated with suberization processes of the muskmelon (Cucumis melo) rind. Physiologia plantarum, 121 (1), 141–148. doi: 10.1111/j.0031–9317.2004.00301.x

Published

2015-12-18

How to Cite

Прісс, О. П., & Калитка, В. В. (2015). Effect of heat treatment with antioxidants on oxygen radical scavenging during storage of zucchini squash. Eastern-European Journal of Enterprise Technologies, 6(10(78), 47–53. https://doi.org/10.15587/1729-4061.2015.56188

Issue

Section

Technology and Equipment of Food Production