Development of potentiometric sensors for determining the concentration of ethan-1,2-dicarboxylic and 2-hydroxybenzoic acids
DOI:
https://doi.org/10.15587/1729-4061.2016.75385Keywords:
potentiometry, sensor, succinic acid, salicylic acid, ion associate, food, kvass, red wine, walnut leaves, pharmaceuticalsAbstract
The study suggests developed potentiometric sensors for determining the concentration of succinic and salicylic acids through using ion associates of succinic acid with safranin T and salicylic acid with safranin T as an electrodeactive material of a plasticized film membrane. It is an important task of analytic practice to determine the contents of succinic and salicylic acids in samples with a complex matrix (the environment, foodstuffs, and pharmaceuticals). The research has revealed analytical electrode characteristics of the designed sensors: the dynamic range (4–7 and 3–8 pC); the electrode function slope of 31 and 49 mV/pC; the minimum detectable concentration of Сmin=9·109 mol/L and 8·108 mol/L; the optimum pH range of 5.5–8.0 in the sensors operation; the conditioning time of 24 hours; the response time of 1–2 min; the lifetime of 11 months, respectively, for succinic acid and salicylic acid. We have found the selectivity coefficients (Ksel) for the devised sensors by the method of individual solutions with respect to carboxylic acids (citrate (1.0·103), tartaric (1.0·101), oxalic (3.0·103), and acetic (2.0·103)). The method of additives was used to find the succinic acid content in samples of kvass (sr=4.0 %), red wine (sr=5.0 %), walnut leaves (sr=5.8 %), whereas salicylic acid was studied in salicylic ointment (sr=4.6 %) and the solution of salicylic acid and resorcinol (sr=4.0 %). The correctness of the results was tested by the alternative alkalimetry method. The reproducibility of the suggested ionometric and alternative alkalimetric methods by the Fisher criterion (Fexp<Ftabl) was found to be the same. The proposed sensors can be used in analytical laboratories for quality control of foodstuffs and pharmaceuticals.
References
- Korenman, Ya. I., Kuchmenko, T. A. (2002). Approaches for food products analyses. Development of mass-sensitive sensors. Russian Chem. J., 46 (4), 34–42.
- Korotkaya, E. (2014). Biosensors: Design, Classification, and Applications in the Food Industry. Foods and Raw Materials, 2 (2), 161–171. doi: 10.12737/5476
- Ermolaeva, T. N., Kalmykova, E. N., Shashkanova, O. Y. (2008). Piezoquartz biosensors for the analysis of environmental objects, foodstuff and for clinical diagnostic. Russian Journal of General Chemistry, 78 (12), 2430–2444. doi: 10.1134/s1070363208120256
- Matorina, K. V., Chmilenko, T. S., Chmilenko, F. O. (2015). Elektrodno-analitychni vlastyvosti polivinilchlorydnyh membran na osnovi potrijnyh metalopolimernyh kompleksiv. Bull. Dnip. un-ty. Ser. Chem, 23 (1), 40–49.
- Tesakova, V. A., Voronov, N. N. (2009). Himicheskij analiz lekarstvennyh rastenij. Himiya rastitel'nogo syr'ya, 5, 152–154.
- Ageeva, N. M., Tolmachev, V. A. (2002). Snizhenie toksicheskogo dejstviya etanola s pomoshhyu pishhevyh dobavok. Hranenie i pererabotka sel'hoz syr'ya, 2, 38–39.
- Zharev, A. I., Drozdin, V. F. (2008). Yantarnaya kislota v zhizni cheloveka. Biohimiya, 7, 58–62.
- Kreshkov, V. A., Trach, S. G., Progot, V. N. (2011). Metody analiza pishhevyh produktov i medicinskih preparatov. Pishhevaya promyshhlennost', 2, 95–101.
- Slivkin, A. I., Sirotkina, G. G., Slivkin, D. A., Nikolaevskij, V. A., Lapenko, V. L., Filonova, E. V. (2010). Razrabotka kompleksnogo nootropnogo sredstva na osnove pantogama i yantarnoy kisloty. Vestnik Voronezhskogo gos. un-ta, 1, 170–177.
- Dzyuba, V. F., Slivkin, A. I., Slivkin, D. A., Filonova, E. V., Belenova, A. S. (2010). Razrabotka sostava, tehnologii izgotovleniya i standartizacii rectal'nyh suppozitoriev na osnove pantogama i yantarnoy kisloty. Vestnik Voronezhskogo gos. un-ta. Ser.: Himija. Biologija. Farmacija, 2, 144–149.
- Burceva, Yu., Mavrina, A., Kalinin, A., Naronova, N. A., Belokonova, N. A. (2013). Problemy kontrolya soderzhaniya i svojstv organicheskih primesey v pit'evyh vodah. Uspehi sovremennogo estestvozhnaniya, 9, 110–111.
- Olennikov, D. N., Tanhaeva, L. M., Rohin, A. V. (2004). Biologicheski aktivnye veshhestva suhogo ekstrakta kakalij kop'evidnoj. Himiya rastitel'nogo syr'ya, 3, 59–62.
- Olennikov, D. N., Samuel'zen, E. B., Tanhaeva, L. M. (2007). Podorozhnik bol'shoj. Himicheskij sostav i primenenie. Himiya rastitel'nogo syr'ya, 2, 37–50.
- Goryushkina, T. B., Dzyadevich, S. V. (2008). Vinogradni vyna. Himichnyj sklad ta metody vyznachennya. Biotehnologiya, 1 (2), 24–38.
- Chasovshhikov, A. R., Pomozova, V. A., Hodzhamkulova, A. A., Horunzhina, S. I., Fedyushkina, I. L. (2011). Sostav organicheskih kislot napitkov na zernovom syr'e. Tehnika i tehnologiya pishhevyh proizvodstv, 4, 126–130.
- Rubenchikov, R. A., Goncharov, N. F. (2005). Izuchenie sostava fenol'nyh soedinenij falki polevoj metodom VEZhH. Himiko-farmacevticheskiy zhurnal, 39 (3), 31–32.
- Avdeeva, E. Yu., Krasnov, E. A., Shilova, I. V. (2008). Komponentnyj sostav frakcii Filipendula ulmaria maxim. s vysokoj antioksidantnoj aktivnost'yu. Himia rastitelnogo syr'ya, 3, 115–118.
- Krasnov, E. A., Avdeeva, E. Yu. (2012). Himicheskij sostav rastenij roda Filipendulа. Himia rastitelnogo syr'ya, 4, 5–12.
- Bubenchikova, V. N., Suhomlinov, Yu. A. (2005). Izuchenie sostava fenol'nyh soedineniy lapchatki pryamostoyachej metodom VEZhH. Vestnik Voronezhskogo gos. un-ta, 2, 160–161.
- Vernikovskaya, N. A., Temerdashev, Z. A. (2012). Identifikaciya i hromatograficheskoe opredelenie fenol'nyh soedinenij v tysyachelisnike obyknovennom. Analitika i kontrol', 2, 188–195.
- Sawyer, M., Kumar, V. (2003). A Rapid High-Performance Liquid Chromatographic Method for the Simultaneous Quantitation of Aspirin, Salicylic Acid, and Caffeine in Effervescent Tablets. Journal of Chromatographic Science, 41 (8), 393–397. doi: 10.1093/chromsci/41.8.393
- Starchak, Yu. A., Bubenchikova, V. N. (2015). Izychenie soedinenij tim'yana dvulikogo. Vestnik Voronezhskogo gos. un-ta, 25, 139–141.
- Evtieva, О. А., Proskurina, K. I., Hmeleva, M. A., Petuhova, I. Yu. (2013). Validaciya metodiki kolichestvennogo opredeleniya kisloty salicylovoj v lekarstvennoj forme metodom spektrofotometrii. Nauchnye vedomosti Belgorodskogo gos. un-ta. Ser.: Medicyna. Farmaciya, 24 (25), 244–248.
- Lar'kina, M. S., Kadyrova, T. V., Ermilova, E. V. (2008). Izuchenie dinamiki nakopleniya fenolkarbonovyh kislot v nadzemnoy chasti vasil'ka sherohovatogo. Himia rastitelnogo syr'ya, 3, 71–74.
- Shilova, I. V., Semenov, A. A., Suslov, N. I., Korotkova, E. I., Vtorushina, A. N., Belyakova, V. V. (2009). Himicheskij sostav I biologicheskaya aktivnost' frakcij ekstrakta labaznika vyazolistogo. Himiko-farmacevticheskiy zhurnal, 43 (4), 7–11.
- Abdulina, S. G., Lira, O. A., Ziyatdinova, G. K., Budnikov, G. K., Kodryanu, N. P. (2009). Primenenie gal'vanostaticheskoy kulonometrii dlya analiza karbonovyh kislot. Himiko-farmacevticheskiy zhurnal, 43 (6), 54–56.
- Murahina, О. А., Nazarova, I. A., Shvedene, N. V. (2003). Azoproizvodnye fenilbornoj kislony kak aktivnyj component membrany, obratimoj k salicilat-anionu. Vestnik Mosk. un-ta. Ser.; himiya, 44 (2), 131–134.
- Blikova, Yu. N., Pasekova, N. A., Shvedene, N. V. (2000). Salicylat-selectivnye electrody na osnove kompleksov olova (IV) s organicheskimi ligandami. Vestnik Mosk. un-ta. Ser.: Himiya, 41 (4), 259–264.
- Shvedene, N. V., Dejzerovich, N. N., Kostalyndina, E. V., Koval', Ya. N., Pletnev, I. V. (2000). Ftalocianat aluminiya kak aktivnyj komponent membrannogo ionselektivnogo elektroda, obratimogo k salicilatu. Vestnik Mosk. un-ta. Ser.: Himiya, 41 (1), 34–36.
- Shvedene, N. V., Bel'chenko, N. N., Starushko, N. V. (1998). Zhidkostnye membrannye elektrody na osnove diazosoedinenij dlya opredeleniya organicheskih anionov. Vestnik Mosk. un-ta. Ser.: Himiya, 39 (6), 383–389.
- Liu, D., Chen, W.-C., Shen, G.-L., Yu, R.-Q. (1996). Polymeric membrane salicylate-sensitive electrodes based on organotin(IV) carboxylates. Analyst, 121 (10), 1495. doi: 10.1039/an9962101495
- Ergonul, P. G., Nergiz, C. (2010). Determination of organic acids in olive fruit by HPLC. Czech J. Food Sci., 28, 202–205.
- Kordi-Krape, M. (2001). Determination of organic acids in white wines by RP-HPLC. Food technol. biotechnol., 39 (2), 93–99.
- Zeppa, G., Conterno, L., Gerbi, V. (2001). Rapid determination of main constituents of packed juices by reverse phase-high performance liquid chromatography: an insight in to commercial fruit drinks. J. Agric. Food Chem., 49, 272–276.
- Nour, V., Trandafir, I., Ionica, M. E. (2010). HPLC organic acid analysis in different citrus juices under reversed phase conditions. Not. Bot. Hort. Agrobot. Cluj., 38 (1), 44–48.
- Zaharova, A. M., Karcova, L. A., Grinshtein, I. L. (2013). Opredelenie organicheskih kislot, uglevodov I podslastitelej v pishhevyh produktah I biologicheski-aktivnyh dobavkah metodom vysokoeffektivnoj zhidkostnoj hromatografii. Analitika I kontrol', 17 (2), 204–210.
- Geng, X., Zhang, S., Wang, Q., Zhao, Z. (2008). Determination of organic acids in the presence of inorganic anions by ion chromatography with suppressed conductivity detection. Journal of Chromatography A, 1192 (1), 187–190. doi: 10.1016/j.chroma.2008.03.073
- Golden, K. D., Williams, O. J. (2001). Amino Acid, Fatty Acid, and Carbohydrate Content of Artocarpus altilis (Breadfruit). Journal of Chromatographic Science, 39 (6), 243–250. doi: 10.1093/chromsci/39.6.243
- You, J., Zhang, W., Zhang, Y. (2001). Simple derivatization method for sensitive determination of fatty acids with fluorescence detection by high-performance liquid chromatography using 9-(2-hydroxyethyl)-carbazole as derivatization reagent. Analytica Chimica Acta, 436 (1), 163–172. doi: 10.1016/s0003-2670(01)00897-2
- Chmilenko, F. A., Korobova, I. V., Gurtovaya, O. V., Chmilenko, T. S. (2009). Potentiometric membrane sensors for polyvinylpyrrolidone determination. Talanta, 78 (4-5), 1259–1265. doi: 10.1016/j.talanta.2009.01.049
- Chmilenko, T. S., Matorina, E. V., Chmilenko, F. A. (2013). Potenciometricheskie sensory dlya opredeleniya vysokomolekulyarnogo polivinilpirrolidona. Metody i ob''ekty himicheskogo analiza, 8 (2), 63–71.
- Matorina, K. (2015). Development of electro-chemical sensor for determination of molybdenum (VI) contain in biological fluids. Eastern-European Journal of Enterprise Technologies, 3/6 (75), 25–31. doi: 10.15587/1729-4061.2015.42821
- Ammann, D. (1986). Ion-selective microelectrode. Principles, design and application. Berlin: Springer-Verlag Berlin Haidelberg, 348. doi: 10.1007/978-3-642-52507-0
- Martin, M. J., Rolfe, P., Tyson, J. F., Ersser, R. S., McCrum, W. A., Rowland, A. P. (1986). Automated analysis of ions in solution. Analytical Proceedings, 23 (8), 303. doi: 10.1039/ap9862300303
- Lewenstam, A., Maj-Zurawska, M., Hulanicki, A. (1991). Application of ion-selective electrodes in clinical analysis. Electroanalysis, 3 (8), 727–734. doi: 10.1002/elan.1140030802
- Ladenson, J. (1983). Ion-selective electrodes in clinical chemistry and medicine. Anal. Proc., 20, 554–556.
- Kharitonov, S. V. (2007). Ion-selective electrodes in medicinal drug determination. Russian Chemical Reviews, 76 (4), 361–395. doi: 10.1070/rc2007v076n04abeh003670
- Mikhel’son, K. N. (2008). Electrochemical sensors based on ionophores: Current state, trends, and prospects. Russian Journal of General Chemistry, 78 (12), 2445–2454. doi: 10.1134/s1070363208120268
- Bulatov, M. I., Kalinkin, I. P. (1985). Prakticheskoe rukovodstvo po fotometricheskim metodam analiza. Leningrad: Himiya, 432.
- Koryta, I., Shtulyk, K. (1980). Ion–selectivnye electrody. Moscow: Mir, 195.
- Skug, D., Uest, D. (1979). Osnovy analyticheskoj himii. Vol. 1. Moscow: Mir, 480.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Kateryna Matorina, Olena Podpletnia
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.