Development of potentiometric sensors for determining the concentration of ethan-1,2-dicarboxylic and 2-hydroxybenzoic acids

Authors

  • Kateryna Matorina Oles Honchar Dnipropetrovsk National University Gagarina 72, Dnipropetrovsk, Ukraine, 49010, Ukraine https://orcid.org/0000-0002-4168-0159
  • Olena Podpletnia State establishment «Dnipropetrovsk Medical Academy» Dzerzhinsky str., 9, Dnipropetrovsk, Ukraine, 49044, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.75385

Keywords:

potentiometry, sensor, succinic acid, salicylic acid, ion associate, food, kvass, red wine, walnut leaves, pharmaceuticals

Abstract

The study suggests developed potentiometric sensors for determining the concentration of succinic and salicylic acids through using ion associates of succinic acid with safranin T and salicylic acid with safranin T as an electrode­active material of a plasticized film membrane. It is an important task of analytic practice to determine the contents of succinic and salicylic acids in samples with a complex matrix (the environment, foodstuffs, and pharmaceuticals). The research has revealed analytical electrode characteristics of the designed sensors: the dynamic range (4–7 and 3–8 pC); the electrode function slope of 31 and 49 mV/pC; the minimum detectable concentration of Сmin=9·10­9 mol/L and 8·10­8 mol/L; the optimum pH range of 5.5–8.0 in the sensors operation; the conditioning time of 24 hours; the response time of 1–2 min; the lifetime of 11 months, respectively, for succinic acid and salicylic acid. We have found the selectivity coefficients (Ksel) for the devised sensors by the method of individual solutions with respect to carboxylic acids (citrate (1.0·10­3), tartaric (1.0·10­1), oxalic (3.0·10­3), and acetic (2.0·10­3)). The method of additives was used to find the succinic acid content in samples of kvass (sr=4.0 %), red wine (sr=5.0 %), walnut leaves (sr=5.8 %), whereas salicylic acid was studied in salicylic ointment (sr=4.6 %) and the solution of salicylic acid and resorcinol (sr=4.0 %). The correctness of the results was tested by the alternative alkalimetry method. The reproducibility of the suggested ionometric and alternative alkalimetric methods by the Fisher criterion (Fexp<Ftabl) was found to be the same. The proposed sensors can be used in analytical laboratories for quality control of foodstuffs and pharmaceuticals. 

Author Biographies

Kateryna Matorina, Oles Honchar Dnipropetrovsk National University Gagarina 72, Dnipropetrovsk, Ukraine, 49010

Associated Professor, Candidate of Chemical Sciences

The department of Analytical Chemistry

Olena Podpletnia, State establishment «Dnipropetrovsk Medical Academy» Dzerzhinsky str., 9, Dnipropetrovsk, Ukraine, 49044

Professor, Doctor of Pharmacy

The department of General and Сinical pharmacy

References

  1. Korenman, Ya. I., Kuchmenko, T. A. (2002). Approaches for food products analyses. Development of mass-sensitive sensors. Russian Chem. J., 46 (4), 34–42.
  2. Korotkaya, E. (2014). Biosensors: Design, Classification, and Applications in the Food Industry. Foods and Raw Materials, 2 (2), 161–171. doi: 10.12737/5476
  3. Ermolaeva, T. N., Kalmykova, E. N., Shashkanova, O. Y. (2008). Piezoquartz biosensors for the analysis of environmental objects, foodstuff and for clinical diagnostic. Russian Journal of General Chemistry, 78 (12), 2430–2444. doi: 10.1134/s1070363208120256
  4. Matorina, K. V., Chmilenko, T. S., Chmilenko, F. O. (2015). Elektrodno-analitychni vlastyvosti polivinilchlorydnyh membran na osnovi potrijnyh metalopolimernyh kompleksiv. Bull. Dnip. un-ty. Ser. Chem, 23 (1), 40–49.
  5. Tesakova, V. A., Voronov, N. N. (2009). Himicheskij analiz lekarstvennyh rastenij. Himiya rastitel'nogo syr'ya, 5, 152–154.
  6. Ageeva, N. M., Tolmachev, V. A. (2002). Snizhenie toksicheskogo dejstviya etanola s pomoshhyu pishhevyh dobavok. Hranenie i pererabotka sel'hoz syr'ya, 2, 38–39.
  7. Zharev, A. I., Drozdin, V. F. (2008). Yantarnaya kislota v zhizni cheloveka. Biohimiya, 7, 58–62.
  8. Kreshkov, V. A., Trach, S. G., Progot, V. N. (2011). Metody analiza pishhevyh produktov i medicinskih preparatov. Pishhevaya promyshhlennost', 2, 95–101.
  9. Slivkin, A. I., Sirotkina, G. G., Slivkin, D. A., Nikolaevskij, V. A., Lapenko, V. L., Filonova, E. V. (2010). Razrabotka kompleksnogo nootropnogo sredstva na osnove pantogama i yantarnoy kisloty. Vestnik Voronezhskogo gos. un-ta, 1, 170–177.
  10. Dzyuba, V. F., Slivkin, A. I., Slivkin, D. A., Filonova, E. V., Belenova, A. S. (2010). Razrabotka sostava, tehnologii izgotovleniya i standartizacii rectal'nyh suppozitoriev na osnove pantogama i yantarnoy kisloty. Vestnik Voronezhskogo gos. un-ta. Ser.: Himija. Biologija. Farmacija, 2, 144–149.
  11. Burceva, Yu., Mavrina, A., Kalinin, A., Naronova, N. A., Belokonova, N. A. (2013). Problemy kontrolya soderzhaniya i svojstv organicheskih primesey v pit'evyh vodah. Uspehi sovremennogo estestvozhnaniya, 9, 110–111.
  12. Olennikov, D. N., Tanhaeva, L. M., Rohin, A. V. (2004). Biologicheski aktivnye veshhestva suhogo ekstrakta kakalij kop'evidnoj. Himiya rastitel'nogo syr'ya, 3, 59–62.
  13. Olennikov, D. N., Samuel'zen, E. B., Tanhaeva, L. M. (2007). Podorozhnik bol'shoj. Himicheskij sostav i primenenie. Himiya rastitel'nogo syr'ya, 2, 37–50.
  14. Goryushkina, T. B., Dzyadevich, S. V. (2008). Vinogradni vyna. Himichnyj sklad ta metody vyznachennya. Biotehnologiya, 1 (2), 24–38.
  15. Chasovshhikov, A. R., Pomozova, V. A., Hodzhamkulova, A. A., Horunzhina, S. I., Fedyushkina, I. L. (2011). Sostav organicheskih kislot napitkov na zernovom syr'e. Tehnika i tehnologiya pishhevyh proizvodstv, 4, 126–130.
  16. Rubenchikov, R. A., Goncharov, N. F. (2005). Izuchenie sostava fenol'nyh soedinenij falki polevoj metodom VEZhH. Himiko-farmacevticheskiy zhurnal, 39 (3), 31–32.
  17. Avdeeva, E. Yu., Krasnov, E. A., Shilova, I. V. (2008). Komponentnyj sostav frakcii Filipendula ulmaria maxim. s vysokoj antioksidantnoj aktivnost'yu. Himia rastitelnogo syr'ya, 3, 115–118.
  18. Krasnov, E. A., Avdeeva, E. Yu. (2012). Himicheskij sostav rastenij roda Filipendulа. Himia rastitelnogo syr'ya, 4, 5–12.
  19. Bubenchikova, V. N., Suhomlinov, Yu. A. (2005). Izuchenie sostava fenol'nyh soedineniy lapchatki pryamostoyachej metodom VEZhH. Vestnik Voronezhskogo gos. un-ta, 2, 160–161.
  20. Vernikovskaya, N. A., Temerdashev, Z. A. (2012). Identifikaciya i hromatograficheskoe opredelenie fenol'nyh soedinenij v tysyachelisnike obyknovennom. Analitika i kontrol', 2, 188–195.
  21. Sawyer, M., Kumar, V. (2003). A Rapid High-Performance Liquid Chromatographic Method for the Simultaneous Quantitation of Aspirin, Salicylic Acid, and Caffeine in Effervescent Tablets. Journal of Chromatographic Science, 41 (8), 393–397. doi: 10.1093/chromsci/41.8.393
  22. Starchak, Yu. A., Bubenchikova, V. N. (2015). Izychenie soedinenij tim'yana dvulikogo. Vestnik Voronezhskogo gos. un-ta, 25, 139–141.
  23. Evtieva, О. А., Proskurina, K. I., Hmeleva, M. A., Petuhova, I. Yu. (2013). Validaciya metodiki kolichestvennogo opredeleniya kisloty salicylovoj v lekarstvennoj forme metodom spektrofotometrii. Nauchnye vedomosti Belgorodskogo gos. un-ta. Ser.: Medicyna. Farmaciya, 24 (25), 244–248.
  24. Lar'kina, M. S., Kadyrova, T. V., Ermilova, E. V. (2008). Izuchenie dinamiki nakopleniya fenolkarbonovyh kislot v nadzemnoy chasti vasil'ka sherohovatogo. Himia rastitelnogo syr'ya, 3, 71–74.
  25. Shilova, I. V., Semenov, A. A., Suslov, N. I., Korotkova, E. I., Vtorushina, A. N., Belyakova, V. V. (2009). Himicheskij sostav I biologicheskaya aktivnost' frakcij ekstrakta labaznika vyazolistogo. Himiko-farmacevticheskiy zhurnal, 43 (4), 7–11.
  26. Abdulina, S. G., Lira, O. A., Ziyatdinova, G. K., Budnikov, G. K., Kodryanu, N. P. (2009). Primenenie gal'vanostaticheskoy kulonometrii dlya analiza karbonovyh kislot. Himiko-farmacevticheskiy zhurnal, 43 (6), 54–56.
  27. Murahina, О. А., Nazarova, I. A., Shvedene, N. V. (2003). Azoproizvodnye fenilbornoj kislony kak aktivnyj component membrany, obratimoj k salicilat-anionu. Vestnik Mosk. un-ta. Ser.; himiya, 44 (2), 131–134.
  28. Blikova, Yu. N., Pasekova, N. A., Shvedene, N. V. (2000). Salicylat-selectivnye electrody na osnove kompleksov olova (IV) s organicheskimi ligandami. Vestnik Mosk. un-ta. Ser.: Himiya, 41 (4), 259–264.
  29. Shvedene, N. V., Dejzerovich, N. N., Kostalyndina, E. V., Koval', Ya. N., Pletnev, I. V. (2000). Ftalocianat aluminiya kak aktivnyj komponent membrannogo ionselektivnogo elektroda, obratimogo k salicilatu. Vestnik Mosk. un-ta. Ser.: Himiya, 41 (1), 34–36.
  30. Shvedene, N. V., Bel'chenko, N. N., Starushko, N. V. (1998). Zhidkostnye membrannye elektrody na osnove diazosoedinenij dlya opredeleniya organicheskih anionov. Vestnik Mosk. un-ta. Ser.: Himiya, 39 (6), 383–389.
  31. Liu, D., Chen, W.-C., Shen, G.-L., Yu, R.-Q. (1996). Polymeric membrane salicylate-sensitive electrodes based on organotin(IV) carboxylates. Analyst, 121 (10), 1495. doi: 10.1039/an9962101495
  32. Ergonul, P. G., Nergiz, C. (2010). Determination of organic acids in olive fruit by HPLC. Czech J. Food Sci., 28, 202–205.
  33. Kordi-Krape, M. (2001). Determination of organic acids in white wines by RP-HPLC. Food technol. biotechnol., 39 (2), 93–99.
  34. Zeppa, G., Conterno, L., Gerbi, V. (2001). Rapid determination of main constituents of packed juices by reverse phase-high performance liquid chromatography: an insight in to commercial fruit drinks. J. Agric. Food Chem., 49, 272–276.
  35. Nour, V., Trandafir, I., Ionica, M. E. (2010). HPLC organic acid analysis in different citrus juices under reversed phase conditions. Not. Bot. Hort. Agrobot. Cluj., 38 (1), 44–48.
  36. Zaharova, A. M., Karcova, L. A., Grinshtein, I. L. (2013). Opredelenie organicheskih kislot, uglevodov I podslastitelej v pishhevyh produktah I biologicheski-aktivnyh dobavkah metodom vysokoeffektivnoj zhidkostnoj hromatografii. Analitika I kontrol', 17 (2), 204–210.
  37. Geng, X., Zhang, S., Wang, Q., Zhao, Z. (2008). Determination of organic acids in the presence of inorganic anions by ion chromatography with suppressed conductivity detection. Journal of Chromatography A, 1192 (1), 187–190. doi: 10.1016/j.chroma.2008.03.073
  38. Golden, K. D., Williams, O. J. (2001). Amino Acid, Fatty Acid, and Carbohydrate Content of Artocarpus altilis (Breadfruit). Journal of Chromatographic Science, 39 (6), 243–250. doi: 10.1093/chromsci/39.6.243
  39. You, J., Zhang, W., Zhang, Y. (2001). Simple derivatization method for sensitive determination of fatty acids with fluorescence detection by high-performance liquid chromatography using 9-(2-hydroxyethyl)-carbazole as derivatization reagent. Analytica Chimica Acta, 436 (1), 163–172. doi: 10.1016/s0003-2670(01)00897-2
  40. Chmilenko, F. A., Korobova, I. V., Gurtovaya, O. V., Chmilenko, T. S. (2009). Potentiometric membrane sensors for polyvinylpyrrolidone determination. Talanta, 78 (4-5), 1259–1265. doi: 10.1016/j.talanta.2009.01.049
  41. Chmilenko, T. S., Matorina, E. V., Chmilenko, F. A. (2013). Potenciometricheskie sensory dlya opredeleniya vysokomolekulyarnogo polivinilpirrolidona. Metody i ob''ekty himicheskogo analiza, 8 (2), 63–71.
  42. Matorina, K. (2015). Development of electro-chemical sensor for determination of molybdenum (VI) contain in biological fluids. Eastern-European Journal of Enterprise Technologies, 3/6 (75), 25–31. doi: 10.15587/1729-4061.2015.42821
  43. Ammann, D. (1986). Ion-selective microelectrode. Principles, design and application. Berlin: Springer-Verlag Berlin Haidelberg, 348. doi: 10.1007/978-3-642-52507-0
  44. Martin, M. J., Rolfe, P., Tyson, J. F., Ersser, R. S., McCrum, W. A., Rowland, A. P. (1986). Automated analysis of ions in solution. Analytical Proceedings, 23 (8), 303. doi: 10.1039/ap9862300303
  45. Lewenstam, A., Maj-Zurawska, M., Hulanicki, A. (1991). Application of ion-selective electrodes in clinical analysis. Electroanalysis, 3 (8), 727–734. doi: 10.1002/elan.1140030802
  46. Ladenson, J. (1983). Ion-selective electrodes in clinical chemistry and medicine. Anal. Proc., 20, 554–556.
  47. Kharitonov, S. V. (2007). Ion-selective electrodes in medicinal drug determination. Russian Chemical Reviews, 76 (4), 361–395. doi: 10.1070/rc2007v076n04abeh003670
  48. Mikhel’son, K. N. (2008). Electrochemical sensors based on ionophores: Current state, trends, and prospects. Russian Journal of General Chemistry, 78 (12), 2445–2454. doi: 10.1134/s1070363208120268
  49. Bulatov, M. I., Kalinkin, I. P. (1985). Prakticheskoe rukovodstvo po fotometricheskim metodam analiza. Leningrad: Himiya, 432.
  50. Koryta, I., Shtulyk, K. (1980). Ion–selectivnye electrody. Moscow: Mir, 195.
  51. Skug, D., Uest, D. (1979). Osnovy analyticheskoj himii. Vol. 1. Moscow: Mir, 480.

Downloads

Published

2016-08-30

How to Cite

Matorina, K., & Podpletnia, O. (2016). Development of potentiometric sensors for determining the concentration of ethan-1,2-dicarboxylic and 2-hydroxybenzoic acids. Eastern-European Journal of Enterprise Technologies, 4(10(82), 16–23. https://doi.org/10.15587/1729-4061.2016.75385