Fuzzy models of rough mathematics

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.86739

Keywords:

rough mathematics, fuzzy models of rough numbers, problem solving in rough mathematics, rough linear programming

Abstract

The study shows that the introduced known formal description of rough sets can be interpreted in terms of fuzzy sets. This makes it possible to solve many problems of rough mathematics by the developed apparatus of fuzzy mathematics. The authors suggest a way of describing rough numbers with the help of membership functions of fuzzy numbers. The study specifies the chosen type of membership functions and the method of calculating their parameters. The algebra of fuzzy numbers is adapted to perform operations with numbers that are described roughly. The obtained elements are formulae for calculating the expected values and variations of rough numbers. These correlations are simplified for the most realistic special cases. A possibility is considered for solving roughly given optimization problems. A procedure is described for reducing an optimization problem with rough parameters to a usual problem of mathematical programming. An example is given on solving a linear programming problem whose parameters are determined roughly. The rough problem parameters are described with functions of an (L-R) type. It is suggested that the problem should be solved on the basis of the introduced complex criterion. The numerical value of the criterion takes into account the extent of closeness of the obtained result to the modal solution as well as the level of compactness of the membership function of the resulting value of the objective function.

Author Biographies

Lev Raskin, National Technical University «Kharkiv Polytechnic Institute» Bagalіya str., 21, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Computer Monitoring and logistics

Oksana Sira, National Technical University «Kharkiv Polytechnic Institute» Bagalіya str., 21, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Computer Monitoring and logistics

References

  1. Kostenko, Yu. T., Raskin, L. G. (1996). Prohnozirovanie tekhnicheskoho sostoianiya sistem upravleniya. Kharkiv: Osnova, 303.
  2. Sira, O. V. (2009). Stokhastycheskaya transportnaya zadacha. Nechetko-sluchainaya model. Informatsiyno-keruyuchi systemy na zaliznychnomu transporti, 2, 18–21.
  3. Zubarev, V. V., Kovtunenko, A. P., Raskin, L. G. (2005). Matematicheskie metody otsenky y prohnozirovaniya tekhnicheskikh pokazateley ekspluatatsionnykh svoistv radiotekhnicheskikh system. Kyiv: NAU, 184.
  4. Raskin, L. G. (1988). Matematicheskie metody issledovaniya operatsiy i analiza slozhnikh sistem vooruzheniya PVO. Kharkiv: VYRTA, 177.
  5. Popovskaia, T. N., Raskin, L. G., Sira, O. V. (2004). Informatsionnie tekhnolohii dyahnostiki-meditsinskie ekspertnie sistemy. Klinicheskaya informatika i telemeditsina, 1, 81–85.
  6. Pyhnastyi, O. M. (2003). Teoryia predpryiatyia. Ustoichyvost funktsionirovaniya massovoho proizvodstva i prodvizheniya produktsii na rinok. Kharkiv: KhNU im. Karazina, 272.
  7. Raskin, L. G. (1976). Analiz slozhnikh sistem i elementi teorii upravleniya. Moscow: Sovetskoe radio, 344.
  8. Raskin, L. G., Kyrychenko, Y. O., Sira, O. V. (2013). Prikladnoe kontinualnoe lineinoe prohrammirovanye. Kharkiv, 293.
  9. Pyhnastyi, O. M. (2005). Stokhasticheskoe opisanie ekonomiko-proizvodstvennykh system s massovim vypuskom produktsii. Dokladi Natsionalnoy Akademii Nauk, 7, 66–71.
  10. Pyhnastyi, O. M. (2007). Stokhasticheskaya teoriya proizvodstvennykh sistem. Kharkiv: KhNU im. V. N. Karazina, 387.
  11. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi: 10.1016/s0019-9958(65)90241-x
  12. Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1 (1), 3–28. doi: 10.1016/0165-0114(78)90029-5
  13. Diubua, D., Prad, A. (1990). Teoriya vozmozhnostey. Prylozhenye k predstavleniyu znaniy v informatike. Moscow: Radyo i svyaz, 286.
  14. Kofman, A. (1982). Vvedenie v teoriyu nechetkikh mnozhestv. Moscow: Radio i svyaz, 486.
  15. Orlovskiy, S. A. (1981). Problemy prinyatiya resheniy pri nechetkoy informatsii. Moscow: Nauka, 264.
  16. Kaufman, A., Gupta, M. (1985). Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand Reinhold Co, 351.
  17. Kruhlov, V. V., Dli, M., Holunov, M. M. (2001). Nechetkaya lohika i iskusstvennye neironnye seti. Moscow: Fyzmatlyt, 224.
  18. Nahmias, S. (1978). Fuzzy variables. Fuzzy Sets and Systems, 1 (2), 97–110. doi: 10.1016/0165-0114(78)90011-8
  19. Liu, B., Zhao, R. (1995). Stochastic Programming and Fuzzy Programming. Tsinghua University Press, 312.
  20. Kruse, R., Gebhardt, J., Klawonn, F. (1994). Foundations of Fuzzy systems. Chichester. John Wiley & Sons, 278.
  21. Yager, R. R. (2002). On the evolution of uncertain courses of action. Fuzzy Optimization and Decision Making, 1 (1), 13–41. doi: 10.1023/a:1013715523644
  22. Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11 (5), 341–356. doi: 10.1007/bf01001956
  23. Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Academic Publisher, 284.
  24. Pawlak, Z. (1997). Rough set approach to knowledge-based decision support. European Journal of Operational Research, 99 (1), 48–57. doi: 10.1016/s0377-2217(96)00382-7
  25. Slowinski, R., Vanderpooten, D. (2000). A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering, 12 (2), 331–336. doi: 10.1109/69.842271
  26. Słowiński, R., Stefanowski, J. (1989). Rough classification in incomplete information systems. Mathematical and Computer Modelling, 12 (10-11), 1347–1357. doi: 10.1016/0895-7177(89)90373-7
  27. Pawlak, Z. (1985). Rough sets and fuzzy sets. Fuzzy Sets and Systems, 17 (1), 99–102. doi: 10.1016/s0165-0114(85)80029-4
  28. Alefeld, G., Herzberger, J. (1983). Introduction to Interval Computations. New York: Academic Press, 352.
  29. Kalmykov, S. A., Shokyn, Yu. Y., Yuldashev, Z. Kh. (1986). Metody intervalnoho analiza. Novosybyrsk: Nauka, 221.
  30. Hansen, E. (1992). Global Optimization Using Interval Analysis. New York: Marcel Dekker, 230.
  31. Shokyn, Yu. Y. (1981). Intervalnyi analiz. Novosibirsk: Nauka, 112.
  32. Raskin, L. G., Sira, O. V. (2008). Nechetkaya matematika. Kharkiv: Parus, 352.
  33. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: 10.15587/1729-4061.2016.81292
  34. Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: 10.1615/jautomatinfscien.v44.i7.40

Downloads

Published

2016-12-27

How to Cite

Raskin, L., & Sira, O. (2016). Fuzzy models of rough mathematics. Eastern-European Journal of Enterprise Technologies, 6(4 (84), 53–60. https://doi.org/10.15587/1729-4061.2016.86739

Issue

Section

Mathematics and Cybernetics - applied aspects