Fuzzy models of rough mathematics
DOI:
https://doi.org/10.15587/1729-4061.2016.86739Keywords:
rough mathematics, fuzzy models of rough numbers, problem solving in rough mathematics, rough linear programmingAbstract
The study shows that the introduced known formal description of rough sets can be interpreted in terms of fuzzy sets. This makes it possible to solve many problems of rough mathematics by the developed apparatus of fuzzy mathematics. The authors suggest a way of describing rough numbers with the help of membership functions of fuzzy numbers. The study specifies the chosen type of membership functions and the method of calculating their parameters. The algebra of fuzzy numbers is adapted to perform operations with numbers that are described roughly. The obtained elements are formulae for calculating the expected values and variations of rough numbers. These correlations are simplified for the most realistic special cases. A possibility is considered for solving roughly given optimization problems. A procedure is described for reducing an optimization problem with rough parameters to a usual problem of mathematical programming. An example is given on solving a linear programming problem whose parameters are determined roughly. The rough problem parameters are described with functions of an (L-R) type. It is suggested that the problem should be solved on the basis of the introduced complex criterion. The numerical value of the criterion takes into account the extent of closeness of the obtained result to the modal solution as well as the level of compactness of the membership function of the resulting value of the objective function.
References
- Kostenko, Yu. T., Raskin, L. G. (1996). Prohnozirovanie tekhnicheskoho sostoianiya sistem upravleniya. Kharkiv: Osnova, 303.
- Sira, O. V. (2009). Stokhastycheskaya transportnaya zadacha. Nechetko-sluchainaya model. Informatsiyno-keruyuchi systemy na zaliznychnomu transporti, 2, 18–21.
- Zubarev, V. V., Kovtunenko, A. P., Raskin, L. G. (2005). Matematicheskie metody otsenky y prohnozirovaniya tekhnicheskikh pokazateley ekspluatatsionnykh svoistv radiotekhnicheskikh system. Kyiv: NAU, 184.
- Raskin, L. G. (1988). Matematicheskie metody issledovaniya operatsiy i analiza slozhnikh sistem vooruzheniya PVO. Kharkiv: VYRTA, 177.
- Popovskaia, T. N., Raskin, L. G., Sira, O. V. (2004). Informatsionnie tekhnolohii dyahnostiki-meditsinskie ekspertnie sistemy. Klinicheskaya informatika i telemeditsina, 1, 81–85.
- Pyhnastyi, O. M. (2003). Teoryia predpryiatyia. Ustoichyvost funktsionirovaniya massovoho proizvodstva i prodvizheniya produktsii na rinok. Kharkiv: KhNU im. Karazina, 272.
- Raskin, L. G. (1976). Analiz slozhnikh sistem i elementi teorii upravleniya. Moscow: Sovetskoe radio, 344.
- Raskin, L. G., Kyrychenko, Y. O., Sira, O. V. (2013). Prikladnoe kontinualnoe lineinoe prohrammirovanye. Kharkiv, 293.
- Pyhnastyi, O. M. (2005). Stokhasticheskoe opisanie ekonomiko-proizvodstvennykh system s massovim vypuskom produktsii. Dokladi Natsionalnoy Akademii Nauk, 7, 66–71.
- Pyhnastyi, O. M. (2007). Stokhasticheskaya teoriya proizvodstvennykh sistem. Kharkiv: KhNU im. V. N. Karazina, 387.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi: 10.1016/s0019-9958(65)90241-x
- Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1 (1), 3–28. doi: 10.1016/0165-0114(78)90029-5
- Diubua, D., Prad, A. (1990). Teoriya vozmozhnostey. Prylozhenye k predstavleniyu znaniy v informatike. Moscow: Radyo i svyaz, 286.
- Kofman, A. (1982). Vvedenie v teoriyu nechetkikh mnozhestv. Moscow: Radio i svyaz, 486.
- Orlovskiy, S. A. (1981). Problemy prinyatiya resheniy pri nechetkoy informatsii. Moscow: Nauka, 264.
- Kaufman, A., Gupta, M. (1985). Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand Reinhold Co, 351.
- Kruhlov, V. V., Dli, M., Holunov, M. M. (2001). Nechetkaya lohika i iskusstvennye neironnye seti. Moscow: Fyzmatlyt, 224.
- Nahmias, S. (1978). Fuzzy variables. Fuzzy Sets and Systems, 1 (2), 97–110. doi: 10.1016/0165-0114(78)90011-8
- Liu, B., Zhao, R. (1995). Stochastic Programming and Fuzzy Programming. Tsinghua University Press, 312.
- Kruse, R., Gebhardt, J., Klawonn, F. (1994). Foundations of Fuzzy systems. Chichester. John Wiley & Sons, 278.
- Yager, R. R. (2002). On the evolution of uncertain courses of action. Fuzzy Optimization and Decision Making, 1 (1), 13–41. doi: 10.1023/a:1013715523644
- Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11 (5), 341–356. doi: 10.1007/bf01001956
- Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Academic Publisher, 284.
- Pawlak, Z. (1997). Rough set approach to knowledge-based decision support. European Journal of Operational Research, 99 (1), 48–57. doi: 10.1016/s0377-2217(96)00382-7
- Slowinski, R., Vanderpooten, D. (2000). A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering, 12 (2), 331–336. doi: 10.1109/69.842271
- Słowiński, R., Stefanowski, J. (1989). Rough classification in incomplete information systems. Mathematical and Computer Modelling, 12 (10-11), 1347–1357. doi: 10.1016/0895-7177(89)90373-7
- Pawlak, Z. (1985). Rough sets and fuzzy sets. Fuzzy Sets and Systems, 17 (1), 99–102. doi: 10.1016/s0165-0114(85)80029-4
- Alefeld, G., Herzberger, J. (1983). Introduction to Interval Computations. New York: Academic Press, 352.
- Kalmykov, S. A., Shokyn, Yu. Y., Yuldashev, Z. Kh. (1986). Metody intervalnoho analiza. Novosybyrsk: Nauka, 221.
- Hansen, E. (1992). Global Optimization Using Interval Analysis. New York: Marcel Dekker, 230.
- Shokyn, Yu. Y. (1981). Intervalnyi analiz. Novosibirsk: Nauka, 112.
- Raskin, L. G., Sira, O. V. (2008). Nechetkaya matematika. Kharkiv: Parus, 352.
- Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: 10.15587/1729-4061.2016.81292
- Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: 10.1615/jautomatinfscien.v44.i7.40
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Lev Raskin, Oksana Sira
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.