Study of the stress-strain state in defective railway reinforced-concrete pipes restored with corrugated metal structures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109611

Keywords:

reinforced-concrete pipe, corrugated metal structure, defect, promising technologies, equivalent forces, static load, dynamic load, stresses, strains

Abstract

Promising technologies for repair of defective reinforced-concrete pipes with the use of corrugated metal structures have been developed. As a result, it was established that the use of corrugated metal pipes in the major repair of reinforced-concrete pipes will eliminate need of stopping movement of railroad and motor transport. This will enable recovery works in a short time with practically no changes in conditions of operation of transport facilities.

Vertical and horizontal pressure forces on the reinforced-concrete pipes strengthened with a corrugated metal pipe under the influence of static and dynamic loads from the railway rolling stock were calculated. It was established that the value of both vertical and horizontal pressures on a reinforced-concrete pipe arising from the action of rolling stock decreases with an increase in the filling height because of energy dissipation in the depth of soil. For the filling height above the pipe 1 m, the value of vertical pressure from the load C14 was 7.568 kPa and horizontal pressure was 2.523 kPa. The respective figures for vertical and horizontal pressures were 5.957 kPa and 1.986 kPa for the filling height 2 m and 4.912 kPa and 1.637 kPa for the filling height 3 m.

According to the results obtained for static and dynamic pressure forces, the stress-strain state of the pipe in interaction with the soil filling was calculated by the finite element method. The results of calculation of the stress-strain state of the composite pipe showed that the maximum stresses occurring in the vault of the repaired pipe did not exceed maximum permissible values. The magnitude of the stresses in the pipe vault was 0.024 MPa and strains measured 9.3·10–4 mm

Author Biographies

Vitalii Kovalchuk, Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan I. Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD

Department of rolling stock and track

Ruslan Markul, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan Lazaryana str., 2, Dnipro, Ukraine, 49010

PhD

Department of Track and track facilities

Andriy Pentsak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Construction industry

Bohdan Parneta, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Construction industry

Oleksiy Gayda, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD

Department of Construction industry

Serhii Braichenko, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Senior Lecturer

Department of Construction industry

References

  1. Koval, P. M., Babiak, I. P., Sitdykova, T. M. (2010). Normuvannia pry proektuvanni i budivnytstvi sporud z metalevykh hofrovanykh konstruktsiy. Visnyk Dnipropetr. nats. un-tu zal. transp. im. ak. V. Lazariana, 39, 114–117.
  2. Kovalchuk, V. V. (2012). Stan ta problemy zabezpechennia dovhovichnosti prohonovykh budov mostiv. Zbirnyk naukovykh prats DonIZT, 32, 226–235.
  3. Kovalchuk, V. V. (2015). The effect of corrugated elements thickness on the deflected mode of corrugated metal structures. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 3 (57), 199–207. doi: 10.15802/stp2015/46079
  4. Sysyn, M. P., Kowaltschuk, W. W., Nabotschenko, O. S., Gerber, U. (2016). Die Tragfähigkeit von Eisenbahndurchlässen in Abhängigkeit von der Bauausführung und der Instandhaltung. ETR – Eisenbahntechnische Rundschau, 39–44.
  5. Esmaeili, M., Zakeri, J. A., Abdulrazagh, P. H. (2013). Minimum depth of soil cover above long-span soil-steel railway bridges. International Journal of Advanced Structural Engineering, 5 (1), 7. doi: 10.1186/2008-6695-5-7
  6. Cherepov, V. V., Shylin, I. V. (2012). Variantne proektuvannia pry pryiniatti inzhenernoho rishennia po vidnovlennia ekspluatatsiinoho stanu vodopropusknoi truby. Enerho- ta resursozberihaiuchi tekhnolohii pry ekspluatatsii mashyn ta ustatkuvannia. Donetsk, 164–166.
  7. Zhinkin, A. (2011). Problemy i perspektivy tipovogo proektirovaniya metallicheskih gofrirovannyh konstrukciy. Transport Rossiyskoy Federacii, 2, 53–54.
  8. Metallicheskie gofrirovannye konstrukcii: dostoinstva i perspektivy (2008). Evraziya Vesti. Novye tekhnologii. Transportnaya gazeta. Ministerstvo transporta RF, 2, 1–3.
  9. Hnatiuk, I. (2011). Novyi «styl» staroho mostu. Vseukrainska transportna hazeta Mahistral. Available at: http://www.magistral-uz.com.ua/
  10. Handbook of steel drainage and highway construction products (2002). Canada, 482.
  11. Pettersson, L., Sundquist, H. (2007). Design of soil steel composite bridges. Structural Desing and Bridges, 84.
  12. Posibnyk do VBN V.2.3-218-198:2007. Sporudy transportu. Proektuvannia ta budivnytstvo sporud iz metalevykh hofrovanykh konstruktsii na avtomobilnykh dorohakh zahalnoho korystuvannia (2007). Kyiv, 122.
  13. ODM 218.2.001-2009. Rekomendacii po proektirovaniyu vodopropusnyh metallicheskih gofrirovannyh trub: Rasporyazhenie Federal'nogo dorozhnogo agentstva ot 21 iyulya 2009 g (2009). Federal'noe dorozhnoe agentstvo, No. 252-r, 126.
  14. COU 45.120-00034045-015:2012. Otsinka tekhnichnoho stanu ta ekspluatatsiinoi prydatnosti inzhenernykh sporud na zaliznytsiakh Ukrainy (2013). Kyiv: Inpres, 99.
  15. Kovalchuk, V., Luchko, J., Bondarenko, I., Markul, R., Parneta, B. (2016). Research and analysis of the stressed-strained state of metal corrugated structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 6 (7 (84)), 4–9. doi: 10.15587/1729-4061.2016.84236
  16. Waster, M. (2008). RORBROAR. Verifiering av nyutvecklat dimensioneringsprogram samt vidareutveckling for jernvagstrafik. Orebro University, Sweden, 143.
  17. Wysokowski, A., Janusz, L. (2007). Mostowe konstrukcje gruntowo – powlokowe. Laboratoryjne badania niszczace. Awarie w czasie budowy i eksploatacji. XXIII konferencja naukowo-techniczna. Szczecin, 541–550.

Downloads

Published

2017-10-24

How to Cite

Kovalchuk, V., Markul, R., Pentsak, A., Parneta, B., Gayda, O., & Braichenko, S. (2017). Study of the stress-strain state in defective railway reinforced-concrete pipes restored with corrugated metal structures. Eastern-European Journal of Enterprise Technologies, 5(1 (89), 37–44. https://doi.org/10.15587/1729-4061.2017.109611

Issue

Section

Engineering technological systems