Investigation of copper adsorption on natural and microwave-treated bentonite
DOI:
https://doi.org/10.15587/1729-4061.2017.116090Keywords:
modified clays, microwave radiation, wastewater purification, adsorption modeling, non-linear modeling.Abstract
The research studied the removal of copper ions from simulated wastewater by adsorption on natural and simulated with microwave electromagnetic radiation bentonite (EMR-stimulated bentonite). X-ray diffraction was employed to study the structure of the natural bentonite, which was proved to contain hydromica, montmorillonite, quartz, and chlorite. The maximal removal rates of Cu2+ were 20.5 % and 29.1 % for natural and EMR-stimulated bentonite, respectively.
The experimental data of copper adsorption were fitted with theoretical isotherms (Langmuir, Freundlich, Redlich-Peterson, Toth, and Langmuir-Freundlich) using non-linear modeling. The adsorption on natural bentonite followed the Langmuir model, while the Langmuir-Freundlich model fitted the adsorption on EMR-stimulated bentonite. The isotherms were used to calculate the maximal adsorption capacities, which were 11.82 and 25.74 mg/g for natural and EMR-stimulated adsorbents, respectively. The electromagnetic treatment stimulated the formation of the new adsorption sites, improved the pores structure, and influenced the surface charge. The specific adsorption and surface precipitation were involved in the adsorption on EMR-stimulated adsorbentReferences
- Escobar, I. C., Schäfer, A. I. (Eds.) (2010). Sustainable water for the future: Water recycling versus desalination. Vol. 2. Amsterdam, Elsevier Science, 444.
- Hopcroft, F. J. (2015). Wastewater treatment concepts and practices. New York, Momentum Press, 165.
- Al-Saydeh, S. A., El-Naas, M. H., Zaidi, S. J. (2017). Copper removal from industrial wastewater: A comprehensive review. Journal of Industrial and Engineering Chemistry, 56, 35–44. doi: 10.1016/j.jiec.2017.07.026
- De Gisi, S., Lofrano, G., Grassi, M., Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10–40. doi: 10.1016/j.susmat.2016.06.002
- Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239–258. doi: 10.1016/j.clay.2015.12.024
- Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. doi: 10.1016/j.cej.2016.09.029
- Pandey, S. (2017). A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. Journal of Molecular Liquids, 241, 1091–1113. doi: 10.1016/j.molliq.2017.06.115
- Legras, B., Polaert, I., Thomas, M., Estel, L. (2013). About using microwave irradiation in competitive adsorption processes. Applied Thermal Engineering, 57 (1-2), 164–171. doi: 10.1016/j.applthermaleng.2012.03.034
- Li, J., Zhu, L., Cai, W. (2006). Microwave enhanced-sorption of dyestuffs to dual-cation organobentonites from water. Journal of Hazardous Materials, 136 (2), 251–257. doi: 10.1016/j.jhazmat.2005.12.005
- Subannajui, K. (2016). The study of thermal interaction and microstructure of sodium silicate/bentonite composite under microwave radiation. Materials Chemistry and Physics, 184, 345–350. doi: 10.1016/j.matchemphys.2016.09.061
- Kontsur, A. Z., Karpyak, A. R., Sysa, L. V. (2016). Some peculiarities of bentonite regeneration by means of using high-frequency emanation (on the example of biogenic ions). Scientific Bulletin of UNFU, 26 (8), 292–298. doi: 10.15421/40260845
- Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40 (9), 1361–1403. doi: 10.1021/ja02242a004
- Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–471.
- Redlich, O., Peterson, D. L. (1959). A Useful Adsorption Isotherm. The Journal of Physical Chemistry, 63 (6), 1024–1024. doi: 10.1021/j150576a611
- Tóth, J. (2000). Calculation of the BET-Compatible Surface Area from Any Type I Isotherms Measured above the Critical Temperature. Journal of Colloid and Interface Science, 225 (2), 378–383. doi: 10.1006/jcis.2000.6723
- Giles, C. H., Smith, D., Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47 (3), 755–765. doi: 10.1016/0021-9797(74)90252-5
- Kinniburgh, D. G. (1986). General purpose adsorption isotherms. Environmental Science & Technology, 20 (9), 895–904. doi: 10.1021/es00151a008
- Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., Chao, H.-P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. doi: 10.1016/j.watres.2017.04.014
- Ratkowsky, D. A. (1990). Handbook of nonlinear regression models. New York, Marcel Dekker Inc., 241.
- Duggleby, R. G. (1980). Estimation of the Reliability of Parameters Obtained by Non-linear Regression. European Journal of Biochemistry, 109 (1), 93–96. doi: 10.1111/j.1432-1033.1980.tb04771.x
- Subramanyam, B., Das, A. (2014). Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. Journal of Environmental Health Science and Engineering, 12 (1), 92. doi: 10.1186/2052-336x-12-92
- Mekewi, M. A., Darwish, A. S., Amin, M. S., Eshaq, Gh., Bourazan, H. A. (2016). Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation. Egyptian Journal of Petroleum, 25 (2), 269–279. doi: 10.1016/j.ejpe.2015.06.011
- Yu, D. Y., Song, W. H., Zhou, B., Li, W. F. (2009). Assessment of Cu (II)-Bearing Montmorillonite on Cd Adsorption. Biological Trace Element Research, 130 (2), 185–192. doi: 10.1007/s12011-009-8327-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Andriy Kontsur, Leonid Sysa, Marianna Petrova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.