Adaptive filters in signal digital processing of modern telecommunication systems

Authors

  • Степан Петрович Новосядлий Carpathian National University. V.Stefanyk Shevchenka 57, Ivano-Franɫivsk, Ukraine 76025, Ukraine
  • Святослав Володимирович Новосядлий National University "Lviv Polytechnic" Stepan Bandera 12, Lviv , Ukraina 79013, Ukraine
  • Любомир Васильович Мельник Carpathian National University. V.Stefanyk Shevchenka 57, Ivano-Franɫivsk, Ukraine 76025, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.12445

Keywords:

Transversal least squares algorithm, recursive least squares algorithm, Wiener filter

Abstract

In the current era of telecommunication technologies one should always tend to improve the information digital transmission. One of such innovations is the introduction of new adaptive filtering algorithms for efficient transmission of digital signals. The adaptive filter is self-regulating, and depending on the situation, it changes its characteristics. The adaptive filter has the following features and parameters: frequency response is automatically adjusted and modified to enhance the performance and productivity of the filter in accordance with certain criteria. It permits to adapt the filter to changes of input parameters. Such self-tuning of adaptive filters permits to use them in such diverse fields as telephone echo suppression when processing signals in radar, navigation systems, when aligning communication channels and distributing biomedical signals

Author Biographies

Степан Петрович Новосядлий, Carpathian National University. V.Stefanyk Shevchenka 57, Ivano-Franɫivsk, Ukraine 76025

Doctor of Technical Sciences, Professor.

Department of Computer Engineering and Electronics

Святослав Володимирович Новосядлий, National University "Lviv Polytechnic" Stepan Bandera 12, Lviv , Ukraina 79013

Student

Department of Information Systems

Любомир Васильович Мельник, Carpathian National University. V.Stefanyk Shevchenka 57, Ivano-Franɫivsk, Ukraine 76025

Graduate student

Department of Computer Engineering and Electronics

References

  1. Ifeachor, E.C. A new microcomputer-based online ocular artefact removal (OAR) system [Текст] / E. C. Ifeachor, B. W. Jervis, E. L. Morris, E. M. Allen, N. R. Hudson. - IEEE Proc №133, 1986. - 291-300.
  2. Ifeachor, E.C. Knowledge-based enhancement of human EEG signals [Текст] / E. C. Ifeachor, M. T. Hellyar, D. J. Mapps, E.M. Allen. - IEEE Proc №137(5), 1990. - 302-310.
  3. B. Widrow. Neural nets for adaptive filtering and adaptive pattern recognition [Текст] / Widrow. B, Winter. R. - IEEE Computer, 1988. - 25-30.
  4. Lewis A. Adaptive filtering applications in telephony [Текст] / A. Lewis. - BT Technology J, №10. - 49-63.
  5. A. Gilloire. Adaptive filtering in subbands with critical sampling: analysis, experiments, and application to acoustic echo cancellation [Текст] / Gilloire, A. Vetterli, M. - IEEE Trans circuits and system №10, 1992. - 1862-1875.
  6. S.P Harris. Automatic design of frequeneg sampling filters by hybrid Genetic Algorithm Techniques [Текст] / Harris S.P, Ifeachor, E.C. - IEEE Trans-action on Signal Processing №46(K), 1998. - 3304-3314.
  7. J.John. Frequency-domain and multirate adaptive filtering [Текст] / John.J. - IEEE Signal Processing, 1992. - 14-37.
  8. С.П. Новосядлий. Суб- наномікрона технологія структур ВІС [Текст] / Новосядлий С.П. - Івано-Франківськ Місто НВ, 2010. - 456с.
  9. С.П. Новосядлий. Цифровий телефонний апарат на основі БМК і -модуляції [Текст] / Новосядлий С.П. - Технологія і конструювання в електронній апаратурі №1, 1998. - 52-54.
  10. Я.С. Буджак. Технологічні особливості і модель анодного оксидування легованих базових шарів β-танталу для ТПК ЗПДВ [Текст] / Буджак Я.С, Новосядлий С.П. - Вісник Національного університету “Львівська політехніка”. Автоматика, вимірювання та керування №366, 1999. - 87-93.
  11. Ifeachor, E.C.; Jervis, B.W.; Morris, E.L. Allen, E.M. Hudson, N.R. (1986). A new microcomputer-based online ocular artefact removal (OAR) system. IEEE Proc, №133, 291-300.
  12. Ifeachor, E.C. Hellyar, M.T. Mapps, D.J. Allen, E.M. (1990). Knowledge-based enhancement of human EEG signals. IEEE Proc, №137(5), 302-310.
  13. Widrow, B. Winter, R.(1988). Neural nets for adaptive filtering and adaptive pattern recognition. IEEE Computer, 25-30.
  14. Lewis A. (1992). Adaptive filtering applications in telephony. BT Technology J, №10, 49-63.
  15. Gilloire, A. Vetterli, M. (1992). Adaptive filtering in subbands with critical sampling: analysis, experiments, and application to acoustic echo cancellation. IEEE Trans circuits and system-№10, 1862-1875.
  16. Harris S.P, Ifeachor, E.C. (1998). Automatic design of frequeneg sampling filters by hybrid Genetic Algorithm Techniques. IEEE Trans-action on Signal Processing №46(K), 3304-3314.
  17. John J. Frequency-domain and multirate adaptive filtering. (1992). IEEE Signal Processing, 14-37.
  18. Novosyadlyy, S.P. (2010). Sub-nanomykron technology structures LSI. Ivano-Frankivsk City NV, 456.
  19. Novosyadlyy, S.P. (1998). Digital telephone from BMK and -modulation. Technology and design of electronic equipment in 1998 - № 1, 52-54.
  20. Bucak, Y.S, Novosyadlyy, S.P. (1999). Technological features and model anodic oxidation doped base layers of β-tantalum for TPC ZPDV. Bulletin of the National University "Lviv Polytechnic". Automation, measurement and control, № 366, 87-93.

Published

2013-04-25

How to Cite

Новосядлий, С. П., Новосядлий, С. В., & Мельник, Л. В. (2013). Adaptive filters in signal digital processing of modern telecommunication systems. Eastern-European Journal of Enterprise Technologies, 2(9(62), 48–54. https://doi.org/10.15587/1729-4061.2013.12445

Issue

Section

Information and controlling system