Method for forming the portfolio of projects to reduce losses in electric networks based on the lean approach and a feeder-to-feeder analysis

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.140871

Keywords:

distributive electrical networks, electric power losses, portfolio management, portfolio of projects, feeder-to-feeder analysis, projects’ portfolio balancing, reduction of electric power losses

Abstract

This research aims to develop an approach for forming the portfolio of projects for reducing losses in distributive electric networks. The purpose of this paper is to substantiate the selection of projects for reducing losses in distributive networks for the portfolio of projects. The project management of the reduction of losses is based on the principles of value-oriented organization and economic production. We proposed a step-by-step method of formation of a portfolio of projects for reducing losses, in which it was proposed to use a feeder as the unit of analysis. This approach enables a power supply company to create the optimal portfolio of projects by the criteria of value, risks and costs.

The portfolio of the projects for reducing electric power losses in distributive networks of a power supply company includes a set of technical and organizational projects. The proposed approach to formation of the projects’ portfolio includes five stages. Stage 1 involves the identification of the components of the portfolio projects, the basic among which are initiatives, projects, programs, and sub-projects. The projects are grouped at stage 2. To group the projects, we proposed four templates that characterize technical and organizational projects in the portfolio. Stage 3 involves evaluation and selection of projects by the quantitative and qualitative indicators. Value, risks and costs were determined as the main criteria to substantiate the selection of projects. The analytical sample of the projects according to given criteria becomes the basis for the selection of projects. Stage 4 implies prioritization of projects by their ranking. Ranking is performed by means of comparing the values of the indicators of value and attractiveness of a project by the project group or by the entire portfolio of projects. Stage 5 implies balancing the projects’ portfolio by identifying discrepancies between the indicators of project groups and «smoothing». Based on the formed portfolio, the flexibility of losses reduction management increases, since it makes it possible to redistribute the composition of projects by priorities and regulate the use of investment resources.

Author Biographies

Igor Achkasov, Kyiv National University of Construction and Architecture Povitrflotsky ave., 31, Kyiv, Ukraine, 03037

PhD, Associate Professor

Department of Project management

Yevheniia Boiko, Kyiv National University of Construction and Architecture Povitrflotsky ave., 31, Kyiv, Ukraine, 03037

PhD, Associate Professor

Department of Project management

Tetiana Pushkar, O. M. Beketov National University of Urban Economy in Kharkіv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Enterprises Economy of Urban Economy

Yuliya Vykhodets, National Aerospace University named after M. Zhukovsky Kharkiv Aviation Institute Chkalova str., 17, Kharkiv, Ukraine, 61070

PhD, Associate Professor

Department of Software Engineering

References

  1. Enerhetychna stratehiya Ukrainy na period do 2030 roku vid 24.07.2013 No. 1071. Verkhovna Rada Ukrainy. Available at: http://zakon3.rada.gov.ua/laws/show/n0002120-13
  2. Burbelo, M. Y., Melnychuk, L. M. (2008). Stymuliuvannia zmenshennia vtrat v elektrychnykh merezhakh. Vinnytsia, 110.
  3. Lezhniuk, P. D. (2008). Informatsiyne zabezpechennia rozrakhunkiv vtrat elektroenerhiyi u miskykh elektrychnykh merezhakh. Svitlotekhnika ta elektroenerhetyka, 1, 51–57.
  4. Lezhniuk, P. D. (2013). Zmenshennia dodatkovykh vtrat elektroenerhiyi v neodnoridnykh elektrychnykh merezhakh. Visnyk Khmelnytskoho natsionalnoho universytetu, 5, 194–200.
  5. Lezhniuk, P. D. (2014). Zmenshennia dodatkovykh vtrat elektroenerhiyi v elektrychnykh merezhakh za dopomohoiu kros-transformatoriv. Enerhetyka, 3, 7–14. Available at: http://nbuv.gov.ua/UJRN/eete_2014_3_3
  6. Lezhniuk, P. D. (2012). Optymalne keruvannia normalnymy rezhymamy elektroenerhetychnykh system kryterialnym metodom z vykorystanniam neirochitkoho modeliuvannia. Visnyk Vinnytskoho politekhnichnoho instytutu, 1, 127–130.
  7. Kulyk, V. V., Pyskliarova, A. V., Pyskliarov, D. S. (2011). Metody ta zasoby pidvyshchennia tochnosti vyznachennia vtrat elektroenerhiyi v rozpodilnykh merezhakh 10(6) kV z vykorystanniam nechitkykh mnozhyn. Vinnytsia: UNIVERSUM-Vinnytsia, 146.
  8. Kulyk, V. V. (2010). Vyznachennia vtrat elektroenerhiyi v rozpodilchykh merezhakh 10 (6) Kv za umov nedoskonaloi vykhidnoi informatsiyi. Visnyk KDU imeni M. Ostrohradskoho, 4 (63), 103–106.
  9. Kutin, V. M., Kulyk, V. V., Pyskliarov, D. S., Lonska, O. V. (2008). Avtomatyzatsiya rozrakhunku vtrat elektroenerhiyi v rozpodilnykh merezhakh 10 (6) Kv. Naukovi pratsi VNTU, 3, 1–7.
  10. Maliarenko, V. A. (2012). Ekonomiya elektroenerhiyi i znyzhennia vtrat v elektrychnykh merezhakh. Enerhozberezhennia. Enerhetyka. Enerhoaudyt, 08 (102), 9–14.
  11. Sadovskaya, A. (2013). O poteryah elektroenergii v elektricheskih setyah 0,4 kV. Energetika, 2 (45), 22–24.
  12. Cavalheiro, E. M. B., Vergílio, A. H. B., Lyra, C. (2018). Optimal configuration of power distribution networks with variable renewable energy resources. Computers & Operations Research, 96, 272–280. doi: https://doi.org/10.1016/j.cor.2017.09.021
  13. Abdelaziz, A. Y., Mohammed, F. M., Mekhamer, S. F., Badr, M. A. L. (2009). Distribution Systems Reconfiguration using a modified particle swarm optimization algorithm. Electric Power Systems Research, 79 (11), 1521–1530. doi: https://doi.org/10.1016/j.epsr.2009.05.004
  14. Kumar, D., Singh, A., Mishra, S. K., Jha, R. C., Samantaray, S. R. (2018). A coordinated planning framework of electric power distribution system: Intelligent reconfiguration. International Transactions on Electrical Energy Systems, 28 (6), e2543. doi: https://doi.org/10.1002/etep.2543
  15. Castillo, A. (2014). Risk analysis and management in power outage and restoration: A literature survey. Electric Power Systems Research, 107, 9–15. doi: https://doi.org/10.1016/j.epsr.2013.09.002
  16. Nie, S., Huang, Z. C., Huang, G. H., Yu, L., Liu, J. (2018). Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties. Applied Energy, 221, 249–267. doi: https://doi.org/10.1016/j.apenergy.2018.03.194
  17. Min, D., Ryu, J., Choi, D. G. (2018). A long-term capacity expansion planning model for an electric power system integrating large-size renewable energy technologies. Computers & Operations Research, 96, 244–255. doi: https://doi.org/10.1016/j.cor.2017.10.006
  18. Achkasov, I. A., Pushkar', T. A. (2011). Project management of energy saving in housing and communal services of Ukraine. Eastern-European Journal of Enterprise Technologies, 3 (12 (51)), 61–65. Available at: http://journals.uran.ua/eejet/article/view/2471/2272
  19. Semko, I. B. (2014). Metodyka formuvannia portfelia proektiv pidpryiemstv enerhetychnoi haluzi. Upravlinnia rozvytkom skladnykh system, 17, 60–64.

Downloads

Published

2018-08-21

How to Cite

Achkasov, I., Boiko, Y., Pushkar, T., & Vykhodets, Y. (2018). Method for forming the portfolio of projects to reduce losses in electric networks based on the lean approach and a feeder-to-feeder analysis. Eastern-European Journal of Enterprise Technologies, 4(3 (94), 54–65. https://doi.org/10.15587/1729-4061.2018.140871

Issue

Section

Control processes