Determination of optimal parameters of the pulse width modulation of the 4qs transducer for electriс rolling stock

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.143789

Keywords:

4qs transducer, electric rolling stock, power factor, PWM, simulation, power loss

Abstract

Operating modes of the single-phase 4qs transducer with pulse-width modulation as part of the AC electric rolling stock are investigated. The method is developed for determining the PWM parameters, at which the optimum transducer mode in terms of minimizing the reactive power in the “locomotive-traction network” system is implemented.

The features of the developed method are the division of the process of determining the optimum PWM parameters into 2 steps. This allows removing unnecessary blocks from the simulation model and reducing the total simulation time. At the first step, the values of the power factor and current of the DC link in the whole range of coefficients of modulation and shift between the network current and the reference sine-wave signal are determined. Further, from the received data array, pairs of values of the PWM parameters, which ensure the highest power factor of the “electric locomotive-traction network” system are allocated and entered into the table system for setting the PWM parameters. At the second step, the dependences of power loss, and, consequently, both the efficiency and total harmonic distortion of the network current on the transducer clock frequency are determined. The determination of power loss is based on the calculation of the energy dissipated for 1 s on the IGBT transistor and snubber resistor depending on instant values of current through them

Author Biographies

Оleksandr Demydov, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Senior Lecturer

Department of electrical transport and diesel locomotive

Borys Liubarskyi, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of electrical transport and diesel locomotive

Valerii Domanskyi, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of electrical transport and diesel locomotive

Marina Glebova, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Departmentof Alternative Electric Power Engineering and Electrical Engineering

Dmytro Iakunin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of electrical transport and diesel locomotive

Anna Tyshchenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of electric power stations

References

  1. Energy Efficiency and its contribution to energy security and the 2030 Framework for climate and energy policy (2014). Communication from the commission to the European Parliament and the Council. Brussels. Available at: https://ec.europa.eu/energy/sites/ener/files/documents/2014_eec_communication_adopted_0.pdf
  2. Liubarskyi, B., Petrenko, А., Shaida, V., Maslii, A. (2017). Analysis of optimal operating modes of the induction traction drives for establishing a control algorithm over a semiconductor transducer. Eastern-European Journal of Enterprise Technologies, 4 (8 (88)), 65–72. doi: https://doi.org/10.15587/1729-4061.2017.109179
  3. Liubarskyi, B., Petrenko, О., Iakunin, D., Dubinina, O. (2017). Optimization of thermal modes and cooling systems of the induction traction engines of trams. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 59–67. doi: https://doi.org/10.15587/1729-4061.2017.102236
  4. Buriakovskyi, S., Babaiev, M., Liubarskyi, B., Maslii, A., Karpenko, N., Pomazan, D. et. al. (2018). Quality assessment of control over the traction valve-inductor drive of a hybrid diesel locomotive. Eastern-European Journal of Enterprise Technologies, 1 (2 (91)), 68–75. doi: https://doi.org/10.15587/1729-4061.2018.122422
  5. Nerubatskyi, V. P. (2012). Rekuperatyvne halmuvannia na zaliznychnomu transporti yak odyn z vydiv enerhozberezhennia v systemi tiahy zminnoho strumu. Informatsiyno-keruiuchi systemy na zaliznychnomu transporti, 2, 11–15.
  6. Serhienko, M. I., Panasenko, M. V., Chudnyi, O. Yu. (2011). Shliakhy znyzhennia spozhyvannia reaktyvnoi enerhiyi v systemi elektrychnoi tiahy zminnoho strumu 25 kV, 50 Hts. Lokomotiv-inform, 9, 4–9.
  7. Honcharov, Yu. P., Panasenko, M. V., Bozhko, V. V. (2007). Tiahovyi vypriamliach z reversyvnym voltododatkom na zapyraiemykh napivprovidnykovykh pryladakh. Tekhnichna elektrodynamika, 6.
  8. Mu, M., Liu, S., Lin, F., Yang, Z., Yasuoka, I. (2017). Locomotives harmonic compensation by SiC auxiliary converter with active filter function. 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). doi: https://doi.org/10.1109/itec-ap.2017.8080774
  9. Litovchenko, V. V. (2000). 4q-S – chetyrekhkvadrantnyy preobrazovatel' elektrovozov peremennogo toka. Izvestiya vuzov. Elektromekhanika, 3, 64–73.
  10. Macan, M. (2007). Presentation of a four-quadrant converter based system in traction applications – Reference to modeling, simulation and analysis. 2007 European Conference on Power Electronics and Applications. doi: https://doi.org/10.1109/epe.2007.4417646
  11. Popkov, A. B. (1990). Vliyanie ustanovki poperechnoy emkostnoy kompensacii na poteri energii v tyagovoy seti peremennogo toka. Trudy MIITa, 819, 136–141.
  12. Evstaf'ev, A. M., Sychugov, A. N. (2013). Povyshenie energeticheskoy effektivnosti elektrovozov peremennogo toka. Izvestiya Peterburgskogo universiteta putey soobshcheniya, 1 (34), 22–30.
  13. Poluyanovich, N. K. (2014). Matematicheskoe opisanie processov 4q-S-preobrazovatelya. Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskie nauki, 6 (155), 32–39.
  14. Krasnov, A., Liubarskyi, B., Bozhko, V., Petrenko, О., Dubinina, O., Nuriev, R. (2018). Аnalysis of operating modes of single­phase current­source rectifier with rectangular­stepped pulse­width modulation. Eastern-European Journal of Enterprise Technologies, 3 (9 (93), 50–57. doi: https://doi.org/10.15587/1729-4061.2018.131150
  15. Krutyakov, E. A. (Ed.) (2003). Silovye polnost'yu upravlyaemye poluprovodnikovye preobrazovateli (modelirovanie i raschet). Sankt-Peterburg: «Elektrosila», 172.
  16. Yagovkin, D. A. (2015). Razrabotka matematicheskoy modeli vypryamitel'no-invertornogo preobrazovatelya na IGBT-tranzistorah dlya elektrovoza peremennogo toka i ego bloka upravleniya v rezhime tyagi. Sovremennye tekhnologii. Sistemniy analiz. Modelirovanie, 3 (47), 197–202.
  17. Michalík, J., Molnár, J., Peroutka, Z. (2011). Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems. Advances in Electrical and Electronic Engineering, 86–89.
  18. Liubarskyi, B., Demydov, A., Yeritsyan, B., Nuriiev, R., Iakunin, D. (2018). Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 29–39. doi: https://doi.org/10.15587/1729-4061.2018.127936
  19. General Considerations for IGBT and IPM. Mitsubish Application Notes. Available at: http://www.mitsubishielectric.com/semiconductors/files/manuals/powermos3_0.pdf

Downloads

Published

2018-10-31

How to Cite

Demydov О., Liubarskyi, B., Domanskyi, V., Glebova, M., Iakunin, D., & Tyshchenko, A. (2018). Determination of optimal parameters of the pulse width modulation of the 4qs transducer for electriс rolling stock. Eastern-European Journal of Enterprise Technologies, 5(5 (95), 29–38. https://doi.org/10.15587/1729-4061.2018.143789

Issue

Section

Applied physics