Construction of the method for building analytical membership functions in order to apply operations of mathematical analysis in the theory of fuzzy sets

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.144193

Keywords:

analytical membership functions, fuzzy operations, standard set, construction algorithm, properties of completeness, optimization problem

Abstract

This paper considers four methods for finding parameters of the analytical expressions of sigmoids, data on which are given numerically. We have conducted a comparative analysis of the approximation effectiveness using sigmoids by applying the least squares method, by the direct calculation of constants based on values at the equilibrium and saturation threshold points, by the Taylor expansion and splines using an example with different thresholds of equilibrium, sensitivity, saturation. It has been demonstrated that the direct calculation of two constants based on the threshold points of equilibrium, sensitivity, or saturation, could easily, in terms of an algorithm, find two coefficients. It has been shown that when approximating with sigmoids employing the method of least squares the error of the approximating function depends on the symmetrical selection of grid points relative to the equilibrium threshold. We have investigated construction algorithms of membership functions based on two base functions – sigmoid functions of two types of flash and recession. We have built a set of standard membership functions of triangle, trapezoid, rectangle in the form of a product operation. The conditions have been formulated under which the curved shapes of the membership functions are formed, as well as the influence of approximation coefficients on the magnitude of deviations; the properties of completeness and sufficiency have been examined.

It has been demonstrated that such a procedure aimed at forming membership functions based on the totality of numerical values as the approximation spline does not make it possible to meet the requirement for the limit of interval of the value domain.

We have derived a general solution to the optimization problem using the analytical membership functions and compared it to the results of its solution in the Bellman-Zadeh statement.

We have analyzed the properties of transformed operations on fuzzy sets using the example of an optimization problem. It has been demonstrated that the solution in this new statement has two advantages. First, it is derived by applying an optimum search operation employing methods of classical mathematical analysis, using the conditions for a stationary point and conditions for the unchanged signs of second derivatives. Second, it is searched for using the operations of differentiation and root derivation, even under conditions for non-linearity, by commonly known methods by newton-kantorovich or recurrent approximation

Author Biographies

Leonid Dykhta, Petro Mohyla Black Sea National University 68 Desantnykiv str., 10, Mykolaiv, Ukraine, 54003

Doctor of Technical Science, Professor

Department of applied and higher mathematics

Nataliia Kozub, Kherson National Technical University Beryslavske highway., 24, Kherson, Ukraine, 73008

PhD, Associate Professor

Department of Software Tools and Technologies

Alexander Malcheniuk, Petro Mohyla Black Sea National University 68 Desantnykiv str., 10, Mykolaiv, Ukraine, 54003

Postgraduate student

Department of automation and computer-integrated technologies

Oleksii Novosadovskyi, Budivelnykiv str., 16, Mykolayiv, Ukraine, 54000

Businessman-programmer

Alexander Trunov, Petro Mohyla Black Sea National University 68 Desantnykiv str., 10, Mykolaiv, Ukraine, 54003

Doctor of Technical Science, Associate Professor, Head of Department

Department of automation and computer-integrated technologies

Anatolii Khomchenko, Petro Mohyla Black Sea National University 68 Desantnykiv str., 10, Mykolaiv, Ukraine, 54003

Doctor of Physical and Mathematical Sciences, Professor, Head of Department

Department of applied and higher mathematics

References

  1. Gil-Lafuente, A. M. (2005). Fuzzy Logic In Financial Analysis. Springer-VerlagBerlin Heiderberg, 450. doi: https://doi.org/10.1007/3-540-32368-6
  2. Kovalenko, I. I., Dragan, S. V., Sagan', V. Ya. (2010). Sistemnyy analiz zadach sudovogo korpusostroeniya: monografiya. Nikolaev: NUK, 175.
  3. Kovalenko, I. I., Shved, A. V. (2012). Metod ekspertnogo ocenivaniya scenariev. Nikolaev: Izd-vo CHGU im. Petra Mogily, 156.
  4. Kondratenko, Yu. P., Kondratenko, H. V., Sidenko, E. V., Kharchenko, V. S. (2015). Modeli kooperatsiyi universytetiv ta IT kompaniy: Systemy pryiniattiarishen na nechitkiy lohitsi. Kharkiv, 132.
  5. Future trends, newest drone tech revealed at CES 2016. Available at: https://www.directionsmag.com/article/1178
  6. Drones in 2018: Thought Leaders Make Predictions. Available at: https://dronelife.com/2018/01/02/drones-2018-thought-leaders-predict-new-trends/
  7. Austin, R. (2010). Unmanned Aircraft Systems: UAVS Design, Development and Deployment. Wiley. doi: https://doi.org/10.1002/9780470664797
  8. Aleksandrow, M. N., Trunow, A. N. (1989). Metody i srodky adaptacyjnego sterowania w technice glebokovodnej. Materialy V Konferencji: Projektowanie I Budowa Obiectow Oceanotechniki. Szczecin, 53–54.
  9. Blincov, V. S. (1998). Privyaznye podvodnye sistemy. Kyiv: Naukova dumka, 231.
  10. Yastrebov, V. S., Garbuz, E. I., Filatov, A. M., Blincov, V. S., Ivanishin, B. P., Trunov, A. N., Pavlov, A. P. (1990). Razrabotka i ispytanie adaptivnogo podvodnogo robota. Sb. nauchnyh trudov instituta Okeanologii im. P. P. Shirshova AN SSSR. Moscow, 98–112.
  11. Trunov, A. (2016). Criteria for the evaluation of model's error for a hybrid architecture DSS in the underwater technology ACS. Eastern-European Journal of Enterprise Technologies, 6 (9 (84)), 55–62. doi: https://doi.org/10.15587/1729-4061.2016.85585
  12. Trunov, A. (2017). Recurrent transformation of the dynamics model for autonomous underwater vehicle in the inertial coordinate system. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 39–47. doi: https://doi.org/10.15587/1729-4061.2017.95783
  13. Fradkov, A. L. (2005). Application of cybernetic methods in physics. Uspekhi Fizicheskih Nauk, 175 (2), 113–138. doi: https://doi.org/10.3367/ufnr.0175.200502a.0113
  14. Hodakov, V. E., Sokolova, N. A., Kiriychuk, D. L. (2014). O razvitii osnov teorii koordinacii slozhnyh system. Problemy informacionnyh tekhnologiy, 2 (016), 25–30.
  15. Petrov, E. G., Kosenko, N. V. (2014). Koordinacionnoe upravlenie (menedzhment) processami realizacii resheniy. Systemy obrobky informatsiyi, 8, 160–163.
  16. Trunov, A. (2016). Realization of the paradigm of prescribed control of a nonlinear object as the problem on maximization of adequacy. Eastern-European Journal of Enterprise Technologies, 4 (4 (82)), 50–58. doi: https://doi.org/10.15587/1729-4061.2016.75674
  17. Fuzzy Sets and their Applications to Cognitive and Decision Processes (1975). Academic Press, 506. doi: https://doi.org/10.1016/c2013-0-11734-5
  18. Zhuravska, I., Kulakovska, I., Musiyenko, M. (2018). Development of a method for determining the area of operation of unmanned vehicles formation by using the graph theory. Eastern-European Journal of Enterprise Technologies, 2 (3 (92)), 4–12. doi: https://doi.org/10.15587/1729-4061.2018.128745
  19. Trunov, A. (2018). Transformation of operations with fuzzy sets for solving the problems on optimal motion of crewless unmanned vehicles. Eastern-European Journal of Enterprise Technologies, 4 (4 (94)), 43–50. doi: https://doi.org/10.15587/1729-4061.2018.140641
  20. Dorohonceanu, B., Marin, B. A Simple Method for Comparing Fuzzy Numbers. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.9044&rep=rep1&type=pdf
  21. Iliev, O. L., Sazdov, P., Zakeri, A. (2013). A fuzzy logic based controller for integrated control of protected cultivation. World Applied Sciences Journal, 24 (5), 561–569. Available at: https://pdfs.semanticscholar.org/dcf5/1c2b61b2b48cc9ad0b4d045529102ecc7977.pdf
  22. Trunov, A., Belikov, A. (2015). Application of recurrent approximation to the synthesis of neural network for control of processes phototherapy. 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2015.7341389
  23. Trunov, A. (2016). Recurrent approximation as the tool for expansion of functions and modes of operation of neural network. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 41–48. doi: https://doi.org/10.15587/1729-4061.2016.81298
  24. Lukomskiy, Yu. A., Chugunov, V. S. (1988). Sistemy upravleniya morskimi podvizhnymi ob'ektami. Leningrad: Sudostroenie, 272.
  25. Ikonnikov, I. B. (1986). Samohodnye neobitaemye podvodnye apparaty. Leningrad: Sudostroenie, 264.
  26. Korol', Yu. M. (2002). Uravnenie dvizheniya teleupravlyaemyh podvodnyh apparatov. Zbirnyk naukovykh prats UDMTU, 2, 16–25.
  27. Accurately Identify and Tune any Process with Accutune III. Available at: https://www.honeywellprocess.com/library/marketing/notes/AppNote-Honeywell-Accutune-Feb13.pdf
  28. Slizhevskiy, N. B. (1998). Hodkost' i upravlyaemost' podvodnyh tekhnicheskih sredstv. Nikolaev, 148.
  29. Bellman, R. E., Kalaba, R. E. (1965). Quasilinearization and nonlinear boundary – value problems. American Elsiver Publishing Company.
  30. Trunov, A. (2017). Recurrent Approximation in the Tasks of the Neural Network Synthesis for the Control of Process of Phototherapy. Chap. 10. Computer Systems for Healthcare and Medicin. Denmark, 213–248.
  31. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N. (2009). Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. Unmanned Systems Technology XI. doi: https://doi.org/10.1117/12.819082
  32. Chudoba, J., Saska, M., Baca, T., Preucil, L. (2014). Localization and stabilization of micro aerial vehicles based on visual features tracking. 2014 International Conference on Unmanned Aircraft Systems (ICUAS). doi: https://doi.org/10.1109/icuas.2014.6842304
  33. Engel, J., Sturm, J., Cremers, D. (2012). Camera-based navigation of a low-cost quadrocopter. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: https://doi.org/10.1109/iros.2012.6385458
  34. Krajník, T., Vonásek, V., Fišer, D., Faigl, J. (2011). AR-Drone as a Platform for Robotic Research and Education. Research and Education in Robotics – EUROBOT 2011, 172–186. doi: https://doi.org/10.1007/978-3-642-21975-7_16
  35. Krajnik, T., Nitsche, M., Faigl, J., Duckett, T., Mejail, M., Preucil, L. (2013). External localization system for mobile robotics. 2013 16th International Conference on Advanced Robotics (ICAR). 2013. doi: https://doi.org/10.1109/icar.2013.6766520
  36. Krejsa, J., Vechet, S. (2012). Infrared Beacons based Localization of Mobile Robot. Electronics and Electrical Engineering, 117 (1). doi: https://doi.org/10.5755/j01.eee.117.1.1046
  37. Kucherenko, E. I., Dryuk A. D. (2015). Rasshirenie nechetkoy modeli processov upravleniya mobil'nym ob'ektom. Nauka i tekhnika Povitrianykh Syl Zbroinykh Syl Ukrainy, 1, 114–121.
  38. Nickels, K., Hutchinson, S. (2002). Estimating uncertainty in SSD-based feature tracking. Image and Vision Computing, 20 (1), 47–58. doi: https://doi.org/10.1016/s0262-8856(01)00076-2
  39. Stewénius, H., Engels, C., Nistér, D. (2006). Recent developments on direct relative orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 60 (4), 284–294. doi: https://doi.org/10.1016/j.isprsjprs.2006.03.005
  40. Trajković, M., Hedley, M. (1998). Fast corner detection. Image and Vision Computing, 16 (2), 75–87. doi: https://doi.org/10.1016/s0262-8856(97)00056-5
  41. Musiyenko, M. P., Denysov, O. O., Zhuravska, I. M., Burlachenko, I. S. (2016). Development of double median filter for optical navigation problems. 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2016.7583535
  42. Burlachenko, I., Zhuravska, I., Musiyenko, M. (2017). Devising a method for the active coordination of video cameras in optical navigation based on the multi-agent approach. Eastern-European Journal of Enterprise Technologies, 1 (9 (85)), 17–25. doi: https://doi.org/10.15587/1729-4061.2017.90863
  43. Fisun, M., Smith, W., Trunov, A. (2017). The vector rotor as instrument of image segmentation for sensors of automated system of technological control. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2017.8098828
  44. Trunov, A., Fisun, M., Malcheniuk, A. (2018). The processing of hyperspectral images as matrix algebra operations. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset.2018.8336305
  45. Zhuravska, I. M. (2016). Ensuring a stable wireless communication in cyber-physical systems with moving objects. Technology audit and production reserves, 5 (2 (31)), 58–64. doi: https://doi.org/10.15587/2312-8372.2016.80784
  46. Marchuk, G. I. (1977). Metody vychislitel'noy matematiki. Moscow: Nauka, 456.
  47. Solesvik, M., Kondratenko, Y., Kondratenko, G., Sidenko, I., Kharchenko, V., Boyarchuk, A. (2017). Fuzzy decision support systems in marine practice. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). doi: https://doi.org/10.1109/fuzz-ieee.2017.8015471
  48. Kupin, A., Kuznetsov, D., Muzuka, I., Paraniuk, D., Serdiuk, O., Suvoruv, O., Dvornikov, V. (2018). The concept of a modular cyberphysical system for the early diagnosis of energy equipment. Eastern-European Journal of Enterprise Technologies, 4 (2 (94)), 72–79. doi: https://doi.org/10.15587/1729-4061.2018.139644
  49. Kondratenko, Y. P., Kondratenko, N. Y. (2016). Reduced library of the soft computing analytic models for arithmetic operations with asymmetrical fuzzy numbers. Soft Computing: Developments, Methods and Applications. Series: Computer Science, technology and applications. NOVA Science Publishers, Hauppauge, New York, 1–38.
  50. Nasution, D., Nasution, D., Siahaan, A. P. U. (2016). Uncertainty Estimation of Drone Propellers Acceleration and Stability. International Journal of Engineering Development and Research, 4 (3), 322–329. doi: https://doi.org/10.31227/osf.io/ghmns
  51. Trunov, A. (2016). Peculiarities of the interaction of electromagnetic waves with bio tissue and tool for early diagnosis, prevention and treatment. 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO). doi: https://doi.org/10.1109/elnano.2016.7493041
  52. Trunov, A. (2017). Theoretical predicting the probability of electron detachment for radical of cell photo acceptor. 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO). doi: https://doi.org/10.1109/elnano.2017.7939776
  53. Trunov, A., Malcheniuk, A. (2018). Recurrent network as a tool for calibration in automated systems and interactive simulators. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.126498

Downloads

Published

2018-10-11

How to Cite

Dykhta, L., Kozub, N., Malcheniuk, A., Novosadovskyi, O., Trunov, A., & Khomchenko, A. (2018). Construction of the method for building analytical membership functions in order to apply operations of mathematical analysis in the theory of fuzzy sets. Eastern-European Journal of Enterprise Technologies, 5(4 (95), 22–29. https://doi.org/10.15587/1729-4061.2018.144193

Issue

Section

Mathematics and Cybernetics - applied aspects