Improving the quality of electric energy at hydrogenerator units by upgrading control systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.148044

Keywords:

hydrogenerator unit, automated control system, electric energy quality, inverse problems of dynamics

Abstract

We have solved an important scientific-technical task on improving the quality of electric energy produced by hydrogenerator units. The relevance of this topic is predetermined by the fact that existing systems that control frequency and power of hydrogenerator plants do not fully meet international standards regarding the quality of electric energy. The set task is resolved based on the structural-parametric synthesis and optimization of automated systems that control rotation frequency and power based on solving inverse problems on the dynamics of a hydrogenerator unit with the improved system of metrological assurance. In order to analyze and synthesize a precision controller, we have refined a mathematical model of the hydrogenerator and the controlling element of an electro-hydraulic regulating system. The improvement makes it possible to register leaks, overflows, as well as the non-linearity in characteristics of the servomotor.

A structural diagram of the astatic controller is represented, which corresponds to the improved mathematical model, as well as the numerical values for parameters of the structural diagram, defined based on the results of experimental study. We have applied the principle of multiple control. This has made it possible to simplify the structures, parametric synthesis, and parameter setting of the controller. The paper shows the analysis of experimental studies carried out at the operating equipment of hydroelectric power stations (Bajtun, Panama). We give a comparative analysis of work of controllers, based on the principles of PID control, a controller made by Emerson company, and a regulator built on solving the inverse problems of dynamics. The proposed system of automated control over hydrogenerator plants ensures a two-fold increase in the accuracy of control over rotation frequency and power, which improves the quality of electric energy that is generated at hydroelectric power plants

Author Biographies

Gennady Kanjuk, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

Doctor of Technical Sciences, Professor

Department of Heat Power Engineering and Energy Saving Technologies

Andrey Mezerya, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

PhD, Associate Professor

Department of Heat Power Engineering and Energy Saving Technologies

Viacheslav Melnykov, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

Assistant

Department of Heat Power Engineering and Energy Saving Technologies

Nataliia Antonenko, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

PhD, Associate Professor

Department of Heat Power Engineering and Energy Saving Technologies

Anton Chebotarev, Ukrainian Engineering Pedagogics Academy Universytetska str., 16, Kharkiv, Ukraine, 61003

Postgraduate student

Department of Heat Power Engineering and Energy Saving Technologies

References

  1. Normy kachestva elektricheskoy energii. Available at: http://forca.com.ua/info/spravka/normy-kachestva-elektricheskoi-energii.html
  2. Mel'nikov, V. E. (2018). Analiz sushchestvuyushchego normativno-metodicheskogo obespecheniya sistem avtomaticheskogo regulirovaniya gidroagregatov. Aktualni pytannia sohodennia. Tez. dop. Mizhnar. nauk.-prak. konf. Vinnytsia.
  3. Krivchenko, G. I. (1986). Optimizaciya sistem avtomaticheskogo regulirovaniya gidroagregatov. Energomashinostroenie, 4, 7–10.
  4. Braganec, S. A. (2014). Adaptivnaya sistema upravleniya otkrytiem napravlyayushchego apparata gidroagregata s povorotno-lopastnoy turbinoy. Volgograd, 167.
  5. Lur'e, Z. Ya., Dmiterko, V. N. (2003). Optimizaciya parametrov PID-regulyatora sistemy upravleniya chastotoy vrashcheniya rotora gidroturbiny. Vestnik NTU «KhPI». Seriya: Energeticheskie i tekhnologicheskie processy i oborudovanie, 9, 118–123.
  6. Denisenko, V. V. (2006). PID-regulyatory: principy postroeniya i modifikacii. STA, 4, 66–74.
  7. Severin, V. P., Nikulina, E. N. (2005). Vektornye celevye funkcii dlya optimizacii pokazateley kachestva sistem avtomaticheskogo regulirovaniya. Vestnik nacional'nogo tekhnicheskogo universiteta «KhPI», 55, 139–144.
  8. Eker, İ. (2003). Robust governor design for hydro turbines using a multivariable-cascade control approach. Arabian Journal for Science and Engineering, 28 (2B), 195–209.
  9. Astrom, K. J., Hagglund, T. (2006). Advanced PID control. SA. The Instrumentation, Systems, and Automation Society, 460. Available at: https://www.twirpx.com/file/162015/
  10. Silva, G. J., Datta, A., Bhattacharyya, S. P. (2002). New results on the synthesis of PID controllers. IEEE Transactions on Automatic Control, 47 (2), 241–252. doi: https://doi.org/10.1109/9.983352
  11. Leva, A., Cox, C., Ruano, A. (2002). Hands-on PID autotuning: a guide to better utilization. IFAC Professional Brief. Available at: https://sapientia.ualg.pt/handle/10400.1/2342
  12. Ang, K. H., Chong, G., Li, Y. (2005). PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13 (4), 559–576. doi: https://doi.org/10.1109/tcst.2005.847331
  13. Kanyuk, G. I., Mezerya, A. Yu., Mel'nikov, V. E. (2015). Precizionnaya sistema avtomaticheskogo regulirovaniya gidroturbiny. Vestnik Nac. tekhn. un-ta "KhPI", 17 (1126), 91–96.
  14. Wijnheijmer, F. P. (2005). Modelling and control of a hydraulic servo system H∞ control and LPV control versus classical control. TU/e, 90.
  15. Zhernyak, A. P., Lur'e, Z. Ya., Dmiterko, V. N. (2001). Komp'yuternaya sistema regulirovaniya skorosti gidroturbiny. Vestnik NTU «KhPI». Seriya: Tekhnologii v mashinostroenii, 7, 90–92.
  16. Krut'ko, P. D. (1987). Obratnye zadachi dinamiki upravlyaemyh sistem: lineynye modeli. Moscow: Nauka, 304.
  17. Kaniuk, H. I., Babenko, I. A., Melnykov, V. Ye., Kozlova, M. L. (2015). Pat. No. 102675 UA. Elektrohidravlichnyi slidkuiuchyi pryvid z astatychnym elektronnym rehuliatorom. No. u201505112; declareted: 25.05.2015; published: 10.11.2015, Bul. No. 21.

Downloads

Published

2018-11-23

How to Cite

Kanjuk, G., Mezerya, A., Melnykov, V., Antonenko, N., & Chebotarev, A. (2018). Improving the quality of electric energy at hydrogenerator units by upgrading control systems. Eastern-European Journal of Enterprise Technologies, 6(2 (96), 70–78. https://doi.org/10.15587/1729-4061.2018.148044