Geometrically non-linear lattice model of a cantilever beam

Authors

  • Дмитро Миколайович Колесник Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine,69006, Ukraine
  • Олександр Дмитрович Шамровський Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine,69006, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.14824

Keywords:

Cantilever beam, load distribution, large displacement, discrete model lattice model

Abstract

The article is devoted to the geometrically non-linear analysis of the bend of a cantilever beam under a uniformly distributed load. The objective of the article is to check out whether the developed discrete lattice model can be used for the calculation of large displacements in the problem of the bending of the cantilever beam under the uniformly distributed load. The proposed discrete model is a combination of many elements of the lattice consisting of four pairs of nodes connected by six elastic connections with two stiffness, the influence of each of which was determined by the type of deformation, which allows modeling the arbitrary Poisson's ratio. The calculation of the discrete model was carried out by the method of successive displacements. The paper considers two types of load of the cantilever: a load having a constant direction and a tracking load. For both cases, the tables with the results of the calculation by the method of successive displacements in a dimensionless form are presented. In addition, the graphs of dependence of the dimensionless displacements on the dimensionless load are presented and compared with the results of other authors. The comparison showed a high degree of accuracy of the calculation using the proposed discrete model. The results can be used for comparison with the results of other methods of solution of geometrically non-linear problems. In addition, the results provide an assumption about the effectiveness of the proposed discrete model for plane static geometrically non-linear problems of solid mechanics based on simplified beam theory

Author Biographies

Дмитро Миколайович Колесник, Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine,69006

Assistant

Department of Higher and Applied Mathematics

Олександр Дмитрович Шамровський, Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine,69006

Doctor of Technical Sciences, Professor

Department of Automated Systems Software

References

  1. Fertis, D. G. Nonlinear structural engineering. With unique theories and methods to solve effectively complex nonlinear problems [Текст] / D. G. Fertis. — Springer, 2006. — 339 p. — ISBN: 978-3-540-32975-6.
  2. Non-Linear Finite Element Analysis of Solids and Structures. Second Edition [Текст] / R. de Borst, M. A. Crisfield, J J. C. Remmers, C. V. Verhoosel. — 2nd ed. — L: John Wiley & Sons, Ltd., 2012. — 540 p. — ISBN: 978-0-470-66644-9.
  3. Munjiza, A. The combined finite-discrete element method [Текст] / A. Munjiza. — John Wiley & Sons, Ltd., 2004. — 352 p. — ISBN: 978-0-470-84199-0.
  4. Dang, H. K. An efficient finite–discrete element method for quasi-static nonlinear soil–structure interaction problems [Текст] / H. K. Dang, M. A. Meguid. // Int. J. Numer. Anal. Meth. Geomech. — 2013. — Vol. 37, Issue 2. — Pp. 130–149. — doi: 10.1002/nag.1089.
  5. Tran, V. D. H. A finite–discrete element framework for the 3D modeling of geogrid–soil interaction under pullout loading conditions [Текст] / V. D. H. Tran, M. A. Meguid, L. E. Chouinard. // Geotextiles and Geomembranes. — 2013. — Vol. 37. — Pp. 1–9. —doi:10.1016/j.geotexmem.2013.01.003.
  6. Шамровский А.Д. Учет геометрической нелинейности в дискретной модели сплошной среды [Текст] / А.Д. Шамровский, Д.Н. Колесник. // Методи розв’язання прикладних задач механіки деформівного твердого тіла / Дніпропетровський національний університет. — Дніпропетровськ: Ліра, 2012. — Вип. 13. — С. 420–427.
  7. Nguyen, D. H. Validation of partially flexible rod model based on discrete element method using beam deflection and vibration [Текст] / D. H. Nguyen, N. Kang, J. Park. // Powder Technology. — 2013. — Vol. 237. — Pp. 147–152. — doi:10.1016/j.powtec.2013.01.038.
  8. Heyliger, P. R. On a mixed finite element model for large deformation analysis of elastic solids [Текст] / P. R. Heyliger, J. N. Reddy. // International Journal of Non-Linear Mechanics. — 1988. — Vol. 23, Issue 2. — Pp. 131-145.
  9. Dado, M. A new technique for large deflection analysis of non-prismatic cantilever beams [Текст] / M. Dado, S. Al-Sadder. // Mechanics Research Communications. — 2005. — Vol. 32, Issue 6. — Pp. 692–703. — doi:10.1016/j.mechrescom.2005.01.004.
  10. Bathe, K.-J. Finite element formulations for large deformation dynamic analysis [Текст] / K.-J. Bathe, E. Ramm, E. L. Wilson. // International Journal For Numerical Methods In Engineering. — 1975. — Vol. 9. — Pp. 353–386.
  11. Biffle, J. H. JAC2D: A Two-dimensional Finite Element Computer Program for the Nonlinear Quasi-static Response of Solids with the Conjugate Gradient Method [Текст] / J. H. Biffle, M. L. Blanford. — Sandia National Laboratories, 1994. — 130 p.
  12. Holden, J. T. On the finite deflections of thin beams [Текст] / J. T. Holden. // International Journal of Solids and Structures. — 1972. — Vol. 8, Issue 8. — Pp. 1051–1055. — doi:10.1016/0020-7683(72)90069-8.
  13. Xiao, Yi. Large Deflection of Cantilever Beam with Uniformly Distributed Load Using Homotopy Analysis Method [Текст] / Yi Xiao. // Advanced Materials Research. — 2011. — Vol. 250-253. — Pp. 1222–1225. — doi: 10.4028/www.scientific.net/AMR.250-253.1222.
  14. Wang, T.M. Non-linear bending of beams with uniformly distributed loads [Текст] / T. M. Wang. // International Journal of Non-Linear Mechanics. — 1969. — Vol. 4, Issue 4. — Pp. 389–395.
  15. Fertis, D. G. (2006) Nonlinear structural engineering. With unique theories and methods to solve effectively complex nonlinear problems. Springer-Verlag.
  16. De Borst, R., Crisfield, M. A., Remmers, J J. C., Verhoosel, C. V. (2012). Non-Linear Finite Element Analysis of Solids and Structures. Second Edition. John Wiley & Sons, Ltd.
  17. Munjiza, A. (2004). The combined finite-discrete element method John Wiley & Sons, Ltd.
  18. Dang, H. K., Meguid, M. A. (2013). An efficient finite–discrete element method for quasi-static nonlinear soil–structure interaction problems. Int. J. Numer. Anal. Meth. Geomech, 37(2), 130–149. doi: 10.1002/nag.1089
  19. Tran, V. D. H., Meguid, M. A., Chouinard, L. E. (2013). A finite–discrete element framework for the 3D modeling of geogrid–soil interaction under pullout loading conditions. Geotextiles and Geomembranes, 37, 1–9. doi:10.1016/j.geotexmem.2013.01.003
  20. Shamrovsky, A., Kolesnyk, D. (2012). Geometric nonlinearity consideration in the continuous medium discrete model. Metody rozv'yazuvannya prykladnykh zadach mekhaniky deformivnoho tverdoho tila, 13, 420–427.
  21. Nguyen, D. H., Kang, N., Park, J. (2013). Validation of partially flexible rod model based on discrete element method using beam deflection and vibration. Powder Technology, 237, 147–152. doi:10.1016/j.powtec.2013.01.038
  22. Heyliger, P. R., Reddy, J. N. (1988). On a mixed finite element model for large deformation analysis of elastic solids. International Journal of Non-Linear Mechanics, 23(2), 131-145.
  23. Dado, M., Al-Sadder S. (2005). A new technique for large deflection analysis of non-prismatic cantilever beams. Mechanics Research Communications, 32(6), 692–703. doi:10.1016/j.mechrescom.2005.01.004
  24. Bathe, K.-J., Ramm, E., Wilson, E. L. (1975). Finite element formulations for large deformation dynamic analysis. International Journal For Numerical Methods In Engineering, 9, 353–386.
  25. Biffle, J. H., Blanford, M. L. (1994). JAC2D: A Two-dimensional Finite Element Computer Program for the Nonlinear Quasi-static Response of Solids with the Conjugate Gradient Method. Sandia National Laboratories.
  26. Holden, J. T. (1972). On the finite deflections of thin beams. International Journal of Solids and Structures, 8(8), 1051–1055. doi:10.1016/0020-7683(72)90069-8
  27. Xiao, Yi. (2011). Large Deflection of Cantilever Beam with Uniformly Distributed Load Using Homotopy Analysis Method. Advanced Materials Research, 250-253, 1222–1225. doi: 10.4028/www.scientific.net/AMR.250-253.1222
  28. Wang, T. M. (1969). Non-linear bending of beams with uniformly distributed loads. International Journal of Non-Linear Mechanics, 4(4), 389–395.

Published

2013-06-20

How to Cite

Колесник, Д. М., & Шамровський, О. Д. (2013). Geometrically non-linear lattice model of a cantilever beam. Eastern-European Journal of Enterprise Technologies, 3(7(63), 48–51. https://doi.org/10.15587/1729-4061.2013.14824

Issue

Section

Applied mechanics