Synthesis of the structure of functional systems of conversion class with a portional supply of initial products

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.150848

Keywords:

system synthesis, object structure, cybernetic model, functioning efficiency, operation model

Abstract

The main efforts related to enterprise creation and development are aimed at improving efficiency of resource usage in the enterprise activities. Such problem can be successfully solved only if maximum efficiency is achieved at each stage of the conversion process. In turn, solution of this problem at each separate stage relates to creation of a substantiated structure of an object of functional conversion of source products into end products during the system operation. Such an object capable of functioning with maximum efficiency of resource usage was defined by default as a "functional system".

By the example of a technological process of liquid heating, the problem of synthesizing a functional system of a conversion class with a portioned supply of products of directional effect was solved. In the course of synthesis, the task of ensuring possibility of interaction of the system objects during formation of the end product with required consumer qualities was solved at the first stage.

Architecture of a module for identifying system operations and determining limit values of the effective control range was developed at the second stage of synthesis.

A module linking the level of demand for the end products of the system with optimal control of its productivity was created at the third stage.

Application of the proposed approach has enabled creation of a functional structure with a maximum number of degrees of control freedom. In turn, this solution has made it possible to form an optimal control trajectory depending on consumer demand for end products.

The proposed solution enables use of the synthesized architecture for functional systems of a conversion class with a portioned supply of source products

Author Biographies

Igor Lutsenko, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

Doctor of Technical Sciences, Professor

Department of Information and Control Systems

Iryna Oksanych, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD, Associate Professor

Department of Information and Control Systems

Daria Prykhodko, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

PhD

Department of Economics and Entrepreneurship

Svetlana Koval, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD, Senior Lecturer

Department of Information and Control Systems

Olena Feoktystova, National Aerospace University "Kharkiv Aviation Institute" Chkalova str., 17, Kharkiv, Ukraine, 61000

PhD

Department of Management

Iryna Kolos, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 01033

PhD, Associate Professor

Department of Accounting and Auditing

References

  1. Drucker, P. F. (2009). Management: Tasks, Responsibilities, Practices. Harper Collins, 864.
  2. Gavrilov, D. A. (2002). Upravlenie proizvodstvom na baze standarta MRP II. Sankt-Peterburg: Piter, 320.
  3. Peters, T. J., Waterman, R. H. (1982). In search of excellence (lessons from America’s best-run companies). Harper & Row, 400.
  4. Barskiy, L. A., Kozin, V. Z. (1978). Sistemniy analiz v obogashchenii poleznyh iskopaemyh. Moscow: Nedra, 486.
  5. Aleksandrovskiy, N. M. (1969). Elementy teorii optimal'nyh sistem avtomaticheskogo upravleniya. Moscow: Energiya, 128.
  6. Shreyder, Yu. A., Sharov, A. A. (1982). Sistemy i modeli. Moscow: Radio i svyaz', 152.
  7. Novikov, D. A. (2016). Kibernetika: Navigator. Istoriya kibernetiki, sovremennoe sostoyanie, perspektivy razvitiya. Moscow: LENAND, 160.
  8. Viner, N. (1983). Kibernetika ili upravlenie i svyaz' v zhivotnom i mashine. Moscow: Nauka, 344.
  9. Anohin, P. K. (1998). Kibernetika funkcional'nyh sistem. Moscow: Medicina, 400.
  10. Ackoff, R., Emery, F. (2005). On Purposeful Systems: An Interdisciplinary Analysis of Individual and Social Behavior as a System of Purposeful Events. New York: Aldine Transaction, 303.
  11. Gershenson, C., Csermely, P., Érdi, P., Knyazeva, H., Laszlo, A. (2013). The Past, Present and Future of Cybernetics and Systems Research. Systems connecting matter, life, culture and technology, 1 (3), 4–13.
  12. Kukhar, V., Artiukh, V., Butyrin, A., Prysiazhnyi, A. (2017). Stress-Strain State and Plasticity Reserve Depletion on the Lateral Surface of Workpiece at Various Contact Conditions During Upsetting. Advances in Intelligent Systems and Computing, 201–211. doi: https://doi.org/10.1007/978-3-319-70987-1_22
  13. Kukhar, V., Artiukh, V., Prysiazhnyi, A., Pustovgar, A. (2018). Experimental Research and Method for Calculation of 'Upsetting-with-Buckling' Load at the Impression-Free (Dieless) Preforming of Workpiece. E3S Web of Conferences, 33, 02031. doi: https://doi.org/10.1051/e3sconf/20183302031
  14. Dragobetskii, V., Zagirnyak, M., Naumova, O., Shlyk, S., Shapoval, A. (2018). Method of Determination of Technological Durabilityof Plastically Deformed Sheet Parts of Vehicles. International Journal of Engineering & Technology, 7 (4.3), 92–99. doi: https://doi.org/10.14419/ijet.v7i4.3.19558
  15. Moreau, C., Villares, A., Capron, I., Cathala, B. (2016). Tuning supramolecular interactions of cellulose nanocrystals to design innovative functional materials. Industrial Crops and Products, 93, 96–107. doi: https://doi.org/10.1016/j.indcrop.2016.02.028
  16. Lebedev, A. (2017). The Synthesis of Variable Structure System for the Control of Quadrotor Spatial Motion. Applied Mechanics and Materials, 865, 486–491. doi: https://doi.org/10.4028/www.scientific.net/amm.865.486
  17. Asanov, A. Z., Dem'yanov, D. N. (2017). Analytical synthesis of a functional observer of the state of a bilinear dynamic system. Avtometriya, 4, 26–34. doi: https://doi.org/10.15372/aut20170403
  18. Shimanskiy, R. V., Poleshchuk, A. G., Korol'kov, V. P., Cherkashin, V. V. (2017). Alignment of the writing beam with the diffraction structure rotation axis in synthesis of diffractive optical elements in a polar coordinate system. Avtometriya, 2, 30–38. doi: https://doi.org/10.15372/aut20170203
  19. Skoblo, T., Klochko, O., Belkin, E., Sidashenko, A. (2017). Effective Technological Process of Crystallization of Turning Rollers' Massive Castings: Development and Analysis. International Journal of Mineral Processing and Extractive Metallurgy, 2 (3), 34–39. doi: https://doi.org/10.11648/j.ijmpem.20170203.12
  20. Abbas, M., ElMaraghy, H. (2016). Functional Synthesis of Manufacturing Systems Using Co-platforming. Procedia CIRP, 52, 102–107. doi: https://doi.org/10.1016/j.procir.2016.07.069
  21. Tsybulkin, G. A. (2017). Synthesis of structure of system for self-regulation of electrode melting rate. The Paton Welding Journal, 2017 (7), 2–5. doi: https://doi.org/10.15407/tpwj2017.07.01
  22. Guarino, P. (2016). The Universal Type Structure with Unawareness for Conditional Probability Systems. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.3069468
  23. Onodera, A. N., Gavião Neto, W. P., Roveri, M. I., Oliveira, W. R., Sacco, I. C. (2017). Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach. PeerJ, 5, e3026. doi: https://doi.org/10.7717/peerj.3026
  24. Tsao, Y.-C. (2017). Channel coordination under two-level trade credits and demand uncertainty. Applied Mathematical Modelling, 52, 160–173. doi: https://doi.org/10.1016/j.apm.2017.07.046
  25. Kohler, T., Froeschl, J., Bertram, C., Buecherl, D., Herzog, H.-G. (2010). Approach of a Predictive, Cybernetic Power Distribution Management. World Electric Vehicle Journal, 4 (1), 22–30. doi: https://doi.org/10.3390/wevj4010022
  26. Kobylin, P. O. (2017). Functional and component structure of the population trading servicesystem. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina. Seriya: Heolohiya. Heohrafiya. Ekolohiya, 46, 92–100. doi: https://doi.org/10.26565/2410-7360-2017-46-13
  27. Assimakopoulos, N. A., Dimitriou, N. K., Theocharopoulos, I. C. (2010). Business intelligence systems for Virtual Enterprises: a cybernetic approach. International Journal of Applied Systemic Studies, 3 (4), 374. doi: https://doi.org/10.1504/ijass.2010.038349
  28. Lutsenko, I., Fomovskaya, E., Vikhrova, E., Serdiuk, O. (2016). Development of system operations models hierarchy on the aggregating sign of system mechanisms. Eastern-European Journal of Enterprise Technologies, 3 (2 (81)), 39–46. doi: https://doi.org/10.15587/1729-4061.2016.71494
  29. Lutsenko, I., Fomovskaya, E. (2015). Identification of target system operations. The practice of determining the optimal control. Eastern-European Journal of Enterprise Technologies, 6 (2 (78)), 30–36. doi: https://doi.org/10.15587/1729-4061.2015.54432
  30. Lutsenko, I. (2015). Classification of systems and system entities. Metallurgical and Mining Industry, 12, 12–17.
  31. Krasovskiy, A. A. (Ed.) (1987). Spravochnik po teorii avtomaticheskogo upravleniya. Moscow, 712.
  32. Zaloga, V. A., Nagorniy, V. M., Nagorniy, V. V. (2016). Kontrol' dinamicheskogo sostoyaniya metalloobrabatyvayushchey tekhnologicheskoy sistemy i prognozirovanie ee resursa. Sumy: Sumskiy gosudarstvennyy universitet, 242.
  33. Lutsenko, I., Fomovskaya, E. (1973). Synthesis of cybernetic structure of optimal spooler. Metallurgical and Mining Industry, 9, 297–301.
  34. Mihaylov, V. V. (1973). Nadezhnost' elektrosnabzheniya promyshlennyh predpriyatiy. Moscow, 167.
  35. Lutsenko, I. A. (2005). Developing a General Control Criterion for Complex Systems. Cybernetics and Systems Analysis, 41 (5), 789–792. doi: https://doi.org/10.1007/s10559-006-0016-4
  36. Lutsenko, I., Fomovskaya, E., Oksanych, I., Serdiuk, O. (2017). Development of criterion verification method for optimization of operational processes with the distributed parameters. Radio Electronics, Computer Science, Control, 3, 161–174. doi: https://doi.org/10.15588/1607-3274-2017-3-18
  37. Lutsenko, I., Fomovskaya, E., Oksanych, I., Vikhrova, E., Serdiuk, O. (2017). Formal signs determination of efficiency assessment indicators for the operation with the distributed parameters. Eastern-European Journal of Enterprise Technologies, 1 (4 (85)), 24–30. doi: https://doi.org/10.15587/1729-4061.2017.91025
  38. Lutsenko, I., Fomovskaya, E., Oksanych, I., Koval, S., Serdiuk, O. (2017). Development of a verification method of estimated indicators for their use as an optimization criterion. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 17–23. doi: https://doi.org/10.15587/1729-4061.2017.95914
  39. Lutsenko, I., Fomovskaya, O., Vihrova, E., Serdiuk, O., Fomovsky, F. (2018). Development of test operations with different duration in order to improve verification quality of effectiveness formula. Eastern-European Journal of Enterprise Technologies, 1 (4 (91)), 42–49. doi: https://doi.org/10.15587/1729-4061.2018.121810
  40. Lutsenko, I., Oksanych, I., Shevchenko, I., Karabut, N. (2018). Development of the method for modeling operational processes for tasks related to decision making. Eastern-European Journal of Enterprise Technologies, 2 (4 (92)), 26–32. doi: https://doi.org/10.15587/1729-4061.2018.126446
  41. Lutsenko, I., Fomovskaya, E., Koval, S., Serdiuk, O. (2017). Development of the method of quasi-optimal robust control for periodic operational processes. Eastern-European Journal of Enterprise Technologies, 4 (2 (88)), 52–60. doi: https://doi.org/10.15587/1729-4061.2017.107542
  42. DualSystem. Available at: https://www.dropbox.com/s/nf1a5eckk5vtxqb/DualSystem.xls?dl=0

Downloads

Published

2018-12-13

How to Cite

Lutsenko, I., Oksanych, I., Prykhodko, D., Koval, S., Feoktystova, O., & Kolos, I. (2018). Synthesis of the structure of functional systems of conversion class with a portional supply of initial products. Eastern-European Journal of Enterprise Technologies, 6(4 (96), 32–40. https://doi.org/10.15587/1729-4061.2018.150848

Issue

Section

Mathematics and Cybernetics - applied aspects